Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.43.tar.gz (34.8 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.43-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.43.tar.gz.

File metadata

  • Download URL: asrp-0.0.43.tar.gz
  • Upload date:
  • Size: 34.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.43.tar.gz
Algorithm Hash digest
SHA256 b71537be26d67f480722019df1a74b9d35af77151b06da23ae6998f3fb0062d6
MD5 34e9dbaab0f63eb803a656eb0739e73a
BLAKE2b-256 381061bc81f7f38100238fcba651751794b12d0770e03885d1bbb0a7f7cf71b3

See more details on using hashes here.

File details

Details for the file asrp-0.0.43-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.43-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.43-py3-none-any.whl
Algorithm Hash digest
SHA256 b407276aa29122ef5ba5e5633d52b7909ab34aac8fb89330cb43041bb17591ad
MD5 a409a323301549ffb0df732500f3a5f4
BLAKE2b-256 84afeabb39af5a69c56df197d36b8c841352d6df33b2f311f54af25d3eb49271

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page