Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.46.tar.gz (8.8 MB view details)

Uploaded Source

Built Distribution

asrp-0.0.46-py3-none-any.whl (34.3 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.46.tar.gz.

File metadata

  • Download URL: asrp-0.0.46.tar.gz
  • Upload date:
  • Size: 8.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.46.tar.gz
Algorithm Hash digest
SHA256 b31aa23ba7e0b0607ad61f24d5a70ee217bda9c767fd9bffd3e593c876c64e77
MD5 0b62889f6c4923b8ebc02be9e0e5befe
BLAKE2b-256 dd2459c771fa933fccee7511bff71871f93eae877f6fee8cd03ea12f29c23f3a

See more details on using hashes here.

File details

Details for the file asrp-0.0.46-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.46-py3-none-any.whl
  • Upload date:
  • Size: 34.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.46-py3-none-any.whl
Algorithm Hash digest
SHA256 21879895595765f7c655cb4f6593c2066b8a94eb3863ac1bdf1b40971268c6fa
MD5 3f720d88ca4cc499d85508214ad35cb1
BLAKE2b-256 80c65395a0ae74849cee6e01b487468801db10e5aca0f6edf3340706df843a51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page