Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

Preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

Evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

Speech to Hubert code

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

Hubert code to speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

Speech Enhancement

Denoiser copied from fairseq

from asrp import SpeechEnhancer

ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.47.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.47-py3-none-any.whl (45.5 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.47.tar.gz.

File metadata

  • Download URL: asrp-0.0.47.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.47.tar.gz
Algorithm Hash digest
SHA256 45a875ce5422464390bf946a2127cff1da79e3161834cba163e6932ebd25ce53
MD5 7e7a34557e61d975e3c25f943725c800
BLAKE2b-256 900f6dc2a1600e8d63f7b09c67aa43e161f1e5cd15f154d5f6c211e7001d3268

See more details on using hashes here.

File details

Details for the file asrp-0.0.47-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.47-py3-none-any.whl
  • Upload date:
  • Size: 45.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.47-py3-none-any.whl
Algorithm Hash digest
SHA256 bf6c62ad36647464ad7978998d40b8e2e633fd2e8f10088273a01fc51977e2d5
MD5 93c31a1c826f96e37323ba03973ce2f5
BLAKE2b-256 269ed0f9e55b9ee038a6758083bd5d15ad6a12b73e28a3bfd10e80aa342ad227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page