Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

Preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

Evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

Speech to Hubert code

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

Hubert code to speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

Speech Enhancement

Denoiser copied from fairseq

from asrp import SpeechEnhancer

ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.48.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.48-py3-none-any.whl (45.5 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.48.tar.gz.

File metadata

  • Download URL: asrp-0.0.48.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.48.tar.gz
Algorithm Hash digest
SHA256 91a2cffff1fa13e975d2cf01a6fefee82cf4408d5f1b5d07337b3450238a880c
MD5 c1ff74a84906257414338092424dc2c8
BLAKE2b-256 e49101943ce535c69752db13c9f7d0b2de1e01627b123988fc36d5d918c59202

See more details on using hashes here.

File details

Details for the file asrp-0.0.48-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.48-py3-none-any.whl
  • Upload date:
  • Size: 45.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.48-py3-none-any.whl
Algorithm Hash digest
SHA256 1977161f900693a4896d88a29755ac0b2799538745ae1a2063b0388381d0193b
MD5 2d1619812751f8a350d62ca310a8f649
BLAKE2b-256 7cf8f6f51b9c9dff02521b7ef73e923a231afe44ed0b21697fa9620973a716e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page