No project description provided
Project description
asrp
ASR text preprocessing utility
install
pip install asrp
Preprocess
input: dictionary, with key sentence
output: preprocessed result, inplace handling.
import asrp
batch_data = {
'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)
dynamic loading
import asrp
batch_data = {
'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)
Evaluation
import asrp
targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))
Speech to Hubert code
import asrp
hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')
Hubert code to speech
import asrp
code = [] # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)
# play on notebook
import IPython.display as ipd
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)
Speech Enhancement
Denoiser copied from fairseq
from asrp import SpeechEnhancer
ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))
usage - liveASR
- modify from https://github.com/oliverguhr/wav2vec2-live
from asrp.live import LiveSpeech
english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveSpeech(english_model, device_name="default")
asr.start()
try:
while True:
text, sample_length, inference_time = asr.get_last_text()
print(f"{sample_length:.3f}s"
+ f"\t{inference_time:.3f}s"
+ f"\t{text}")
except KeyboardInterrupt:
asr.stop()
usage - liveASR - whisper
from asrp.live import LiveSpeech
whisper_model = "tiny"
asr = LiveSpeech(whisper_model)
asr.start()
last_text = ""
while True:
asr_text = ""
try:
asr_text, sample_length, inference_time = asr.get_last_text()
if len(asr_text) > 0:
print(asr_text, sample_length, inference_time)
except KeyboardInterrupt:
asr.stop()
break
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
asrp-0.0.49.tar.gz
(45.7 kB
view details)
Built Distribution
asrp-0.0.49-py3-none-any.whl
(46.9 kB
view details)
File details
Details for the file asrp-0.0.49.tar.gz
.
File metadata
- Download URL: asrp-0.0.49.tar.gz
- Upload date:
- Size: 45.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b6a528b1065a49a9860e4ea8ff110012554ec404259e507ce4cd9e24f0305f3 |
|
MD5 | baa25b29727cea14ee7a2ea4c2763b7b |
|
BLAKE2b-256 | 6f1a2890c299a59e3cda11769d99f4f58db0db73a54b13b056e8bdd54535c4cc |
File details
Details for the file asrp-0.0.49-py3-none-any.whl
.
File metadata
- Download URL: asrp-0.0.49-py3-none-any.whl
- Upload date:
- Size: 46.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82d389968eb382fb6215219a934e46ab1f6651ae29467b51681781a311e3985f |
|
MD5 | b814230c7376a7e0ae8f50ef6ae4edb8 |
|
BLAKE2b-256 | 452f2092d8dcd8cd531b0f7a79910d1f2b16238ca8443fc68476e4618e8d569a |