No project description provided
Project description
asrp
ASR text preprocessing utility
install
pip install asrp
Preprocess
input: dictionary, with key sentence
output: preprocessed result, inplace handling.
import asrp
batch_data = {
'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)
dynamic loading
import asrp
batch_data = {
'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)
Evaluation
import asrp
targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))
Speech to Hubert code
import asrp
import nlp2
nlp2.download_file(
'https://huggingface.co/voidful/mhubert-base/resolve/main/mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', './')
hc = asrp.HubertCode("voidful/mhubert-base", './mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', 11,
chunk_sec=30,
worker=20)
hc('voice file path')
Hubert code to speech
import asrp
code = [] # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)
# play on notebook
import IPython.display as ipd
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)
Speech Enhancement
Denoiser copied from fairseq
from asrp import SpeechEnhancer
ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))
usage - liveASR
- modify from https://github.com/oliverguhr/wav2vec2-live
from asrp.live import LiveSpeech
english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveSpeech(english_model, device_name="default")
asr.start()
try:
while True:
text, sample_length, inference_time = asr.get_last_text()
print(f"{sample_length:.3f}s"
+ f"\t{inference_time:.3f}s"
+ f"\t{text}")
except KeyboardInterrupt:
asr.stop()
usage - liveASR - whisper
from asrp.live import LiveSpeech
whisper_model = "tiny"
asr = LiveSpeech(whisper_model, vad_mode=2, language='zh')
asr.start()
last_text = ""
while True:
asr_text = ""
try:
asr_text, sample_length, inference_time = asr.get_last_text()
if len(asr_text) > 0:
print(asr_text, sample_length, inference_time)
except KeyboardInterrupt:
asr.stop()
break
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
asrp-0.0.53.tar.gz
(47.1 kB
view details)
Built Distribution
asrp-0.0.53-py3-none-any.whl
(48.5 kB
view details)
File details
Details for the file asrp-0.0.53.tar.gz
.
File metadata
- Download URL: asrp-0.0.53.tar.gz
- Upload date:
- Size: 47.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 037a5acae46d0338d900d0ca9c9f04bade2ddc7c4ebf78f4497a3e65400f8e37 |
|
MD5 | 2787fe8ad680455aa13e196d5722664a |
|
BLAKE2b-256 | 5662c0571c89da23d4ce240f121289df9c62b44c5d57ddce0a59391e71b5901a |
File details
Details for the file asrp-0.0.53-py3-none-any.whl
.
File metadata
- Download URL: asrp-0.0.53-py3-none-any.whl
- Upload date:
- Size: 48.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9618c24ca815c7ed57944ae186598ea2c5896376d0ebcfa2e2f1f1df04ac9ad |
|
MD5 | 41e3314bf766dd9fbd1920825881ca51 |
|
BLAKE2b-256 | 4bdff915104b4d50401756420e3dbe6f5a9898fba0f25a9d767760725471a54c |