Skip to main content

No project description provided

Project description

ASRP: Automatic Speech Recognition Preprocessing Utility

ASRP is a python package that offers a set of tools to preprocess and evaluate ASR (Automatic Speech Recognition) text. The package also provides a speech-to-text transcription tool and a text-to-speech conversion tool. The code is open-source and can be installed using pip.

Key Features

install

pip install asrp

Preprocess

ASRP offers an easy-to-use set of functions to preprocess ASR text data.
The input data is a dictionary with the key 'sentence', and the output is the preprocessed text.
You can either use the fun_en function or use dynamic loading. Here's how to use it:

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

Evaluation

ASRP provides functions to evaluate the output quality of ASR systems using
the Word Error Rate (WER) and Character Error Rate (CER) metrics.
Here's how to use it:

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

Speech to Discrete Unit

import asrp
import nlp2

# https://github.com/facebookresearch/fairseq/blob/ust/examples/speech_to_speech/docs/textless_s2st_real_data.md
# https://github.com/facebookresearch/fairseq/tree/main/examples/textless_nlp/gslm/ulm
nlp2.download_file(
    'https://huggingface.co/voidful/mhubert-base/resolve/main/mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', './')
hc = asrp.HubertCode("voidful/mhubert-base", './mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', 11,
                     chunk_sec=30,
                     worker=20)
hc('voice file path')

Discrete Unit to speech

import asrp

code = []  # discrete unit
# https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
# https://github.com/facebookresearch/fairseq/blob/ust/examples/speech_to_speech/docs/textless_s2st_real_data.md
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

mhubert English hifigan vocoder example

import asrp
import nlp2
import IPython.display as ipd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
nlp2.download_file(
    'https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000',
    './')


tokenizer = AutoTokenizer.from_pretrained("voidful/mhubert-unit-tts")
model = AutoModelForSeq2SeqLM.from_pretrained("voidful/mhubert-unit-tts")
model.eval()
cs = asrp.Code2Speech(tts_checkpoint='./g_00500000', vocoder='hifigan')

inputs = tokenizer(["The quick brown fox jumps over the lazy dog."], return_tensors="pt")
code = tokenizer.batch_decode(model.generate(**inputs,max_length=1024))[0]
code = [int(i) for i in code.replace("</s>","").replace("<s>","").split("v_tok_")[1:]]
print(code)
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

Speech Enhancement

ASRP also provides a tool to enhance speech quality with a noise reduction tool.
from https://github.com/facebookresearch/fairseq/tree/main/examples/speech_synthesis/preprocessing/denoiser

from asrp import SpeechEnhancer

ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))

LiveASR - huggingface's model

from asrp.live import LiveSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

LiveASR - whisper's model

from asrp.live import LiveSpeech

whisper_model = "tiny"
asr = LiveSpeech(whisper_model, vad_mode=2, language='zh')
asr.start()
last_text = ""
while True:
    asr_text = ""
    try:
        asr_text, sample_length, inference_time = asr.get_last_text()
        if len(asr_text) > 0:
            print(asr_text, sample_length, inference_time)
    except KeyboardInterrupt:
        asr.stop()
        break

Speaker Embedding Extraction - x vector

from https://speechbrain.readthedocs.io/en/latest/API/speechbrain.lobes.models.Xvector.html

from asrp.speaker_embedding import extract_x_vector

extract_x_vector('./test/xxx.wav')

Speaker Embedding Extraction - d vector

from https://github.com/yistLin/dvector

from asrp.speaker_embedding import extract_d_vector

extract_d_vector('./test/xxx.wav')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.69.tar.gz (51.4 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.69-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.69.tar.gz.

File metadata

  • Download URL: asrp-0.0.69.tar.gz
  • Upload date:
  • Size: 51.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.1

File hashes

Hashes for asrp-0.0.69.tar.gz
Algorithm Hash digest
SHA256 7a48656142b1d0210298f639515893cc131d953688ad2cb1c4d7b33bed8d40eb
MD5 2139df7e01ce8232b065375ca4f98ad8
BLAKE2b-256 5731146caa56e00008e3741bb35246f361271d29b012a83c773c0fac822798fb

See more details on using hashes here.

File details

Details for the file asrp-0.0.69-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.69-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.1

File hashes

Hashes for asrp-0.0.69-py3-none-any.whl
Algorithm Hash digest
SHA256 8ce78818c78a0cc75d46c5863dff8b0603e98588f99bf9ca87033979faca766e
MD5 1dc6af9f199a4bc205f20808588fda2f
BLAKE2b-256 a34941a1811fe6f5c72acdb63eebc143b3a8f9026218fc9bfe2346a3dc290aa4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page