Skip to main content

No project description provided

Project description

ASRP: Automatic Speech Recognition Preprocessing Utility

ASRP is a python package that offers a set of tools to preprocess and evaluate ASR (Automatic Speech Recognition) text. The package also provides a speech-to-text transcription tool and a text-to-speech conversion tool. The code is open-source and can be installed using pip.

Key Features

install

pip install asrp

Preprocess

ASRP offers an easy-to-use set of functions to preprocess ASR text data.
The input data is a dictionary with the key 'sentence', and the output is the preprocessed text.
You can either use the fun_en function or use dynamic loading. Here's how to use it:

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

Evaluation

ASRP provides functions to evaluate the output quality of ASR systems using
the Word Error Rate (WER) and Character Error Rate (CER) metrics.
Here's how to use it:

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

Speech to Discrete Unit

import asrp
import nlp2

# https://github.com/facebookresearch/fairseq/blob/ust/examples/speech_to_speech/docs/textless_s2st_real_data.md
# https://github.com/facebookresearch/fairseq/tree/main/examples/textless_nlp/gslm/ulm
nlp2.download_file(
    'https://huggingface.co/voidful/mhubert-base/resolve/main/mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', './')
hc = asrp.HubertCode("voidful/mhubert-base", './mhubert_base_vp_en_es_fr_it3_L11_km1000.bin', 11,
                     chunk_sec=30,
                     worker=20)
hc('voice file path')

Discrete Unit to speech

import asrp

code = []  # discrete unit
# https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
# https://github.com/facebookresearch/fairseq/blob/ust/examples/speech_to_speech/docs/textless_s2st_real_data.md
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

mhubert English hifigan vocoder example

import asrp
import nlp2
import IPython.display as ipd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
nlp2.download_file(
    'https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000',
    './')


tokenizer = AutoTokenizer.from_pretrained("voidful/mhubert-unit-tts")
model = AutoModelForSeq2SeqLM.from_pretrained("voidful/mhubert-unit-tts")
model.eval()
cs = asrp.Code2Speech(tts_checkpoint='./g_00500000', vocoder='hifigan')

inputs = tokenizer(["The quick brown fox jumps over the lazy dog."], return_tensors="pt")
code = tokenizer.batch_decode(model.generate(**inputs,max_length=1024))[0]
code = [int(i) for i in code.replace("</s>","").replace("<s>","").split("v_tok_")[1:]]
print(code)
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

Speech Enhancement

ASRP also provides a tool to enhance speech quality with a noise reduction tool.
from https://github.com/facebookresearch/fairseq/tree/main/examples/speech_synthesis/preprocessing/denoiser

from asrp import SpeechEnhancer

ase = SpeechEnhancer()
print(ase('./test/xxx.wav'))

LiveASR - huggingface's model

from asrp.live import LiveSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

LiveASR - whisper's model

from asrp.live import LiveSpeech

whisper_model = "tiny"
asr = LiveSpeech(whisper_model, vad_mode=2, language='zh')
asr.start()
last_text = ""
while True:
    asr_text = ""
    try:
        asr_text, sample_length, inference_time = asr.get_last_text()
        if len(asr_text) > 0:
            print(asr_text, sample_length, inference_time)
    except KeyboardInterrupt:
        asr.stop()
        break

Speaker Embedding Extraction - x vector

from https://speechbrain.readthedocs.io/en/latest/API/speechbrain.lobes.models.Xvector.html

from asrp.speaker_embedding import extract_x_vector

extract_x_vector('./test/xxx.wav')

Speaker Embedding Extraction - d vector

from https://github.com/yistLin/dvector

from asrp.speaker_embedding import extract_d_vector

extract_d_vector('./test/xxx.wav')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.71.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.71-py3-none-any.whl (53.0 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.71.tar.gz.

File metadata

  • Download URL: asrp-0.0.71.tar.gz
  • Upload date:
  • Size: 51.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.1

File hashes

Hashes for asrp-0.0.71.tar.gz
Algorithm Hash digest
SHA256 719d5e83c5f25f3de3a92fe2afb92cc11549dcf6faa095a006ef58a5e8c49c22
MD5 43c84e01f688e0aa29c62cef4603910a
BLAKE2b-256 d6577116e10f5cc8fd47b37e9b907e5e005a8b063f37a22690eb4896a6b6e9e1

See more details on using hashes here.

File details

Details for the file asrp-0.0.71-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.71-py3-none-any.whl
  • Upload date:
  • Size: 53.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.1

File hashes

Hashes for asrp-0.0.71-py3-none-any.whl
Algorithm Hash digest
SHA256 bf3fdc30b3c98eb40707703170d13f974a313deccab1d0569fdca61f739badda
MD5 90e91746b8aa8715ba0adfa6f1e71417
BLAKE2b-256 b91a3e889077a97d7eb11a6e2061ab89962b21dbca5b474e498fcf447496a29d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page