AssemblyAI Python SDK
Project description
AssemblyAI's Python SDK
Build with AI models that can transcribe and understand audio
With a single API call, get access to AI models built on the latest AI breakthroughs to transcribe and understand audio and speech data securely at large scale.
Overview
Documentation
Visit our AssemblyAI API Documentation to get an overview of our models!
Quick Start
Installation
pip install -U assemblyai
Examples
Before starting, you need to set the API key. If you don't have one yet, sign up for one!
import assemblyai as aai
# set the API key
aai.settings.api_key = f"{ASSEMBLYAI_API_KEY}"
Core Examples
Transcribe a local Audio File
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("./my-local-audio-file.wav")
print(transcript.text)
Transcribe an URL
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3")
print(transcript.text)
Export Subtitles of an Audio File
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3")
# in SRT format
print(transcript.export_subtitles_srt())
# in VTT format
print(transcript.export_subtitles_vtt())
List all Sentences and Paragraphs
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3")
sentences = transcript.get_sentences()
for sentence in sentences:
print(sentence.text)
paragraphs = transcript.get_paragraphs()
for paragraph in paragraphs:
print(paragraph.text)
Search for Words in a Transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3")
matches = transcript.word_search(["price", "product"])
for match in matches:
print(f"Found '{match.text}' {match.count} times in the transcript")
Add Custom Spellings on a Transcript
import assemblyai as aai
config = aai.TranscriptionConfig()
config.set_custom_spelling(
{
"Kubernetes": ["k8s"],
"SQL": ["Sequel"],
}
)
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3", config)
print(transcript.text)
LeMUR Examples
Use LeMUR to Summarize Multiple Transcripts
import assemblyai as aai
transcriber = aai.Transcriber()
transcript_group = transcriber.transcribe_group(
[
"https://example.org/customer1.mp3",
"https://example.org/customer2.mp3",
],
)
summary = transcript_group.lemur.summarize(context="Customers asking for cars", answer_format="TLDR")
print(summary)
Use LeMUR to Get Feedback from the AI Coach on Multiple Transcripts
import assemblyai as aai
transcriber = aai.Transcriber()
transcript_group = transcriber.transcribe_group(
[
"https://example.org/interviewee1.mp3",
"https://example.org/interviewee2.mp3",
],
)
feedback = transcript_group.lemur.ask_coach(context="Who was the best interviewee?")
print(feedback)
Use LeMUR to Ask Questions on a Single Transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/customer.mp3")
# ask some questions
questions = [
aai.LemurQuestion(question="What car was the customer interested in?"),
aai.LemurQuestion(question="What price range is the customer looking for?"),
]
results = transcript.lemur.question(questions)
for result in results:
print(f"Question: {result.question}")
print(f"Answer: {result.answer}")
Audio Intelligence Examples
PII Redact a Transcript
import assemblyai as aai
config = aai.TranscriptionConfig()
config.set_pii_redact(
# What should be redacted
policies=[
aai.PIIRedactionPolicy.credit_card_number,
aai.PIIRedactionPolicy.email_address,
aai.PIIRedactionPolicy.location,
aai.PIIRedactionPolicy.person_name,
aai.PIIRedactionPolicy.phone_number,
],
# How it should be redacted
substitution=aai.PIISubstitutionPolicy.hash,
)
transcriber = aai.Transcriber()
transcript = transcriber.transcribe("https://example.org/audio.mp3", config)
Summarize the content of a transcript over time
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(
"https://example.org/audio.mp3",
config=aai.TranscriptionConfig(auto_chapters=True)
)
for chapter in transcript.chapters:
print(f"Summary: {chapter.summary}") # A one paragraph summary of the content spoken during this timeframe
print(f"Start: {chapter.start}, End: {chapter.end}") # Timestamps (in milliseconds) of the chapter
print(f"Healine: {chapter.headline}") # A single sentence summary of the content spoken during this timeframe
print(f"Gist: {chapter.gist}") # An ultra-short summary, just a few words, of the content spoken during this timeframe
Summarize the content of a transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(
"https://example.org/audio.mp3",
config=aai.TranscriptionConfig(summarization=True)
)
print(transcript.summary)
By default, the summarization model will be informative
and the summarization type will be bullets
. Read more about summarization models and types here.
To change the model and/or type, pass additional parameters to the TranscriptionConfig
:
config=aai.TranscriptionConfig(
summarization=True,
summary_model=aai.SummarizationModel.catchy,
summary_type=aai.SummarizationType.headline
)
Detect Sensitive Content in a Transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(
"https://example.org/audio.mp3",
config=aai.TranscriptionConfig(content_safety=True)
)
# Get the parts of the transcript which were flagged as sensitive
for result in transcript.content_safety_labels.results:
print(result.text) # sensitive text snippet
print(result.timestamp.start)
print(result.timestamp.end)
for label in result.labels:
print(label.label) # content safety category
print(label.confidence) # model's confidence that the text is in this category
print(label.severity) # severity of the text in relation to the category
# Get the confidence of the most common labels in relation to the entire audio file
for label, confidence in transcript.content_safety_labels.summary.items():
print(f"{confidence * 100}% confident that the audio contains {label}")
# Get the overall severity of the most common labels in relation to the entire audio file
for label, severity_confidence in transcript.content_safety_labels.severity_score_summary.items():
print(f"{severity_confidence.low * 100}% confident that the audio contains low-severity {label}")
print(f"{severity_confidence.medium * 100}% confident that the audio contains mid-severity {label}")
print(f"{severity_confidence.high * 100}% confident that the audio contains high-severity {label}")
Read more about the content safety categories.
By default, the content safety model will only include labels with a confidence greater than 0.5 (50%). To change this, pass content_safety_confidence
(as an integer percentage between 25 and 100, inclusive) to the TranscriptionConfig
:
config=aai.TranscriptionConfig(
content_safety=True,
content_safety_confidence=80, # only include labels with a confidence greater than 80%
)
Analyze the Sentiment of Sentences in a Transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(
"https://example.org/audio.mp3",
config=aai.TranscriptionConfig(sentiment_analysis=True)
)
for sentiment_result in transcript.sentiment_analysis_results:
print(sentiment_result.text)
print(sentiment_result.sentiment) # POSITIVE, NEUTRAL, or NEGATIVE
print(sentiment_result.confidence)
print(f"Timestamp: {sentiment_result.timestamp.start} - {sentiment_result.timestamp.end}")
If speaker_labels
is also enabled, then each sentiment analysis result will also include a speaker
field.
# ...
config = aai.TranscriptionConfig(sentiment_analysis=True, speaker_labels=True)
# ...
for sentiment_result in transcript.sentiment_analysis_results:
print(sentiment_result.speaker)
Identify Entities in a Transcript
import assemblyai as aai
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(
"https://example.org/audio.mp3",
config=aai.TranscriptionConfig(entity_detection=True)
)
for entity in transcript.entities:
print(entity.text) # i.e. "Dan Gilbert"
print(entity.type) # i.e. EntityType.person
print(f"Timestamp: {entity.start} - {entity.end}")
Playgrounds
Visit one of our Playgrounds:
Advanced
How the SDK handles Default Configurations
Defining Defaults
When no TranscriptionConfig
is being passed to the Transcriber
or its methods, it will use a default instance of a TranscriptionConfig
.
If you would like to re-use the same TranscriptionConfig
for all your transcriptions,
you can set it on the Transcriber
directly:
config = aai.TranscriptionConfig(punctuate=False, format_text=False)
transcriber = aai.Transcriber(config=config)
# will use the same config for all `.transcribe*(...)` operations
transcriber.transcribe("https://example.org/audio.wav")
Overriding Defaults
You can override the default configuration later via the .config
property of the Transcriber
:
transcriber = aai.Transcriber()
# override the `Transcriber`'s config with a new config
transcriber.config = aai.TranscriptionConfig(punctuate=False, format_text=False)
In case you want to override the Transcriber
's configuration for a specific operation with a different one, you can do so via the config
parameter of a .transcribe*(...)
method:
config = aai.TranscriptionConfig(punctuate=False, format_text=False)
# set a default configuration
transcriber = aai.Transcriber(config=config)
transcriber.transcribe(
"https://example.com/audio.mp3",
# overrides the above configuration on the `Transcriber` with the following
config=aai.TranscriptionConfig(dual_channel=True, disfluencies=True)
)
Synchronous vs Asynchronous
Currently, the SDK provides two ways to transcribe audio files.
The synchronous approach halts the application's flow until the transcription has been completed.
The asynchronous approach allows the application to continue running while the transcription is being processed. The caller receives a concurrent.futures.Future
object which can be used to check the status of the transcription at a later time.
You can identify those two approaches by the _async
suffix in the Transcriber
's method name (e.g. transcribe
vs transcribe_async
).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for assemblyai-0.8.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a11da835446d4b6543c920dd23b7e1f2247842b011d4eaeeadb900720bf0e649 |
|
MD5 | c3cc7227243adcf4887d6850cfd5d3b6 |
|
BLAKE2b-256 | ce082b83e38bc1dd4f6fa930e14675df9d436c1f20ed4365fd908f04c092c79c |