Skip to main content

A ML toolkit with code bits useful for our day to day research

Project description

"AI for Sustainability" Toolkit for Research and Analysis. ASTRA (अस्त्र) means a "tool" or "a weapon" in Sanskrit.

Design Principles

Since astra is developed for research purposes, we'd try to adhere to these principles:

What we will try to do:

  1. Keep the API simple-to-use and standardized to enable quick prototyping via automated scripts.
  2. Keep the API transparent to expose as many details as possible. Explicit should be preferred over implicit.
  3. Keep the API flexible to allow users to stretch the limits of their experiments.
  4. Don't provide defaults at most places. This will force the user to think about the choices they are making.

What we will try to avoid:

  1. We will try not to reduce code repetition at the expense of transparency, flexibility and performance. Too much abstraction often makes the API complex to understand and thus becomes hard to adapt for custom use cases. |

Install

Stable version:

pip install astra-lib

Latest version:

pip install git+https://github.com/sustainability-lab/ASTRA

Contributing

Please go through the contributing guidelines before making a contribution.

Useful Code Snippets

Data

Load Data

from astra.torch.data import load_mnist, load_cifar_10

data = load_cifar_10()
print(data)
Files already downloaded and verified
Files already downloaded and verified

CIFAR-10 Dataset
length of dataset: 60000
shape of images: torch.Size([3, 32, 32])
len of classes: 10
classes: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
dtype of images: torch.float32
dtype of labels: torch.int64
range of image values: min=0.0, max=1.0
            

Models

MLPs

from astra.torch.models import MLPRegressor

mlp = MLPRegressor(input_dim=100, hidden_dims=[128, 64], output_dim=10, activation="relu", dropout=0.1)
print(mlp)
MLPRegressor(
  (featurizer): MLP(
    (dropout): Dropout(p=0.1, inplace=False)
    (input_layer): Linear(in_features=100, out_features=128, bias=True)
    (hidden_layer_1): Linear(in_features=128, out_features=64, bias=True)
  )
  (regressor): Linear(in_features=64, out_features=10, bias=True)
)

CNNs

from astra.torch.models import CNNClassifier

cnn = CNNClassifier(
    image_dims=(32, 32),
    kernel_size=5,
    input_channels=3,
    conv_hidden_dims=[32, 64],
    dense_hidden_dims=[128, 64],
    n_classes=10,
)
print(cnn)
CNNClassifier(
  (featurizer): CNN(
    (activation): ReLU()
    (max_pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (input_layer): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (hidden_layer_1): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (aggregator): Identity()
    (flatten): Flatten(start_dim=1, end_dim=-1)
  )
  (classifier): MLPClassifier(
    (featurizer): MLP(
      (activation): ReLU()
      (dropout): Dropout(p=0.0, inplace=False)
      (input_layer): Linear(in_features=4096, out_features=128, bias=True)
      (hidden_layer_1): Linear(in_features=128, out_features=64, bias=True)
    )
    (classifier): Linear(in_features=64, out_features=10, bias=True)
  )
)

EfficientNets

import torch
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
from astra.torch.models import EfficientNetClassifier

# Pretrained model
model = EfficientNetClassifier(model=efficientnet_b0, weights=EfficientNet_B0_Weights.DEFAULT, n_classes=10)
# OR without pretrained weights
# model = EfficientNetClassifier(model=efficientnet_b0, weights=None, n_classes=10)

x = torch.rand(10, 3, 224, 224)
out = model(x)
print(out.shape)
torch.Size([10, 10])

ViT

import torch
from torchvision.models import vit_b_16, ViT_B_16_Weights
from astra.torch.models import ViTClassifier

model = ViTClassifier(vit_b_16, ViT_B_16_Weights.DEFAULT, n_classes=10)
x = torch.rand(10, 3, 224, 224)  # (batch_size, channels, h, w)
out = model(x)
print(out.shape)
torch.Size([10, 10])

Training

Train Function Usage

import torch
import torch.nn as nn
import numpy as np
from astra.torch.utils import train_fn
from astra.torch.models import CNNClassifier

torch.autograd.set_detect_anomaly(True)

X = torch.rand(100, 3, 28, 28)
y = torch.randint(0, 2, size=(200,)).reshape(100, 2).float()

model = CNNClassifier(
    image_dims=(28, 28), kernel_size=5, input_channels=3, conv_hidden_dims=[4], dense_hidden_dims=[2], n_classes=2
)

# Let train_fn do the optimization for you
iter_losses, epoch_losses = train_fn(
    model, input=X, output=y, loss_fn=nn.CrossEntropyLoss(), lr=0.1, epochs=5, verbose=False
)
print(np.array(epoch_losses).round(2))

# OR

# Define your own optimizer

optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
iter_losses, epoch_losses = train_fn(
    model,
    input=X,
    output=y,
    loss_fn=nn.MSELoss(),
    optimizer=optimizer,
    verbose=False,
    epochs=5,
)
print(np.array(epoch_losses).round(2))

# Get the state_dict of the model at each epoch

(iter_losses, epoch_losses), state_dict_history = train_fn(
    model,
    input=X,
    output=y,
    loss_fn=nn.MSELoss(),
    lr=0.1,
    epochs=5,
    verbose=False,
    return_state_dict=True,
)
print(np.array(epoch_losses).round(2))
[0.72 0.7  0.7  0.7  0.7 ]
[1.   0.84 0.7  0.58 0.48]
[0.4  0.33 0.29 0.26 0.25]

Train with DataLoader

import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader

import numpy as np
from astra.torch.utils import train_fn
from astra.torch.models import CNNClassifier

torch.autograd.set_detect_anomaly(True)

X = torch.rand(100, 3, 28, 28)
y = torch.randint(0, 2, size=(200,)).reshape(100, 2).float()

model = CNNClassifier(
    image_dims=(28, 28), kernel_size=5, input_channels=3, conv_hidden_dims=[4], dense_hidden_dims=[2], n_classes=2
)

dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=2)

# Let train_fn do the optimization for you
iter_losses, epoch_losses = train_fn(
    model,
    dataloader=dataloader,
    loss_fn=nn.CrossEntropyLoss(),
    lr=0.1,
    epochs=5,
)
print(np.array(epoch_losses).round(2))
[3.01 0.79 0.77 0.8  0.64]


  0%|          | 0/5 [00:00<?, ?it/s]
Loss: 3.00609981:   0%|          | 0/5 [00:00<?, ?it/s]
Loss: 3.00609981:  20%|██        | 1/5 [00:00<00:02,  1.97it/s]
Loss: 0.78690718:  20%|██        | 1/5 [00:00<00:02,  1.97it/s]
Loss: 0.78690718:  40%|████      | 2/5 [00:00<00:00,  3.64it/s]
Loss: 0.77431746:  40%|████      | 2/5 [00:00<00:00,  3.64it/s]
Loss: 0.77431746:  60%|██████    | 3/5 [00:00<00:00,  4.79it/s]
Loss: 0.79909155:  60%|██████    | 3/5 [00:00<00:00,  4.79it/s]
Loss: 0.79909155:  80%|████████  | 4/5 [00:00<00:00,  5.12it/s]
Loss: 0.64411481:  80%|████████  | 4/5 [00:01<00:00,  5.12it/s]
Loss: 0.64411481: 100%|██████████| 5/5 [00:01<00:00,  5.76it/s]
Loss: 0.64411481: 100%|██████████| 5/5 [00:01<00:00,  4.72it/s]

Advanced Usage

import torch
import torch.nn as nn
import numpy as np
from astra.torch.utils import train_fn
from astra.torch.models import AstraModel


class CustomModel(AstraModel):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(2, 1)
        self.inp1_linear = nn.Linear(2, 1)

    def forward(self, x, inp1, fixed_bias):
        return self.linear(x) + self.inp1_linear(inp1) + fixed_bias


def custom_loss_fn(model_output, output, norm_factor):
    loss_fn = nn.MSELoss()
    loss_val = loss_fn(model_output, output)
    return loss_val / norm_factor


X = torch.randn(10, 2)
y = torch.randn(10, 1)
inp1 = torch.randn(10, 2)
bias = torch.randn(1)
norm_factor = torch.randn(1)

model = CustomModel()

optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
(iter_losses, epoch_losses), state_dict_history = train_fn(
    model,
    input=X,  # Can be None if model.forward() does not require input
    model_kwargs={"inp1": inp1, "fixed_bias": bias},
    output=y,  # Can be None if loss_fn does not require output
    loss_fn=custom_loss_fn,
    loss_fn_kwargs={"norm_factor": norm_factor},
    optimizer=optimizer,
    epochs=5,
    shuffle=True,
    verbose=True,
    return_state_dict=True,
)

print("Epoch_losses", np.array(epoch_losses).round(2))
Epoch_losses [9.63 7.52 6.59 4.98 4.11]


  0%|          | 0/5 [00:00<?, ?it/s]
Loss: 9.63069725:   0%|          | 0/5 [00:00<?, ?it/s]
Loss: 9.63069725:  20%|██        | 1/5 [00:00<00:00,  6.42it/s]
Loss: 7.51600790:  20%|██        | 1/5 [00:00<00:00,  6.42it/s]
Loss: 6.59280062:  20%|██        | 1/5 [00:00<00:00,  6.42it/s]
Loss: 4.97779894:  20%|██        | 1/5 [00:00<00:00,  6.42it/s]
Loss: 4.11271286:  20%|██        | 1/5 [00:00<00:00,  6.42it/s]
Loss: 4.11271286: 100%|██████████| 5/5 [00:00<00:00, 31.35it/s]

Others

Count number of parameters in a model

from astra.torch.utils import count_params
from astra.torch.models import MLPRegressor

mlp = MLPRegressor(input_dim=2, hidden_dims=[5, 6], output_dim=1)

n_params = count_params(mlp)
print(n_params)
{'total_params': 58, 'trainable_params': 58, 'non_trainable_params': 0}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

astra_lib-0.0.6.tar.gz (246.9 kB view details)

Uploaded Source

File details

Details for the file astra_lib-0.0.6.tar.gz.

File metadata

  • Download URL: astra_lib-0.0.6.tar.gz
  • Upload date:
  • Size: 246.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for astra_lib-0.0.6.tar.gz
Algorithm Hash digest
SHA256 21c5f8c9674ce6ee0403fcfb9564089e1ab8759bdb0616a22ea2918cb5be1c5a
MD5 291618910723e8d22ebdf96e32f40a6c
BLAKE2b-256 8de5cd5faa3952a3052a39804195c92391c36d12c24780bb8cdf3867ab9d827b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page