A ML toolkit with code bits useful for our day to day research
Project description
"AI for Sustainability" Toolkit for Research and Analysis. ASTRA (अस्त्र) means a "tool" or "a weapon" in Sanskrit.
Design Principles
Since astra
is developed for research purposes, we'd try to adhere to these principles:
What we will try to do:
- Keep the API simple-to-use and standardized to enable quick prototyping via automated scripts.
- Keep the API transparent to expose as many details as possilbe. Explicit should be preferred over implicit.
- Keep the API flexible to allow users to stretch the limits of their experiments.
What we will try to avoid:
- We will try not to reduce code repeatation at expence of transparency, flexibility and performance. Too much abstraction often makes the API complex to understand and thus becomes hard to adapt for custom use cases.
Examples
Points | Example |
---|---|
1 and 2 | We have exactly same arguments for all strategies in astra.torch.al.strategies to ease the automation but we explicitely mention in the docstrings if an argument is used or ignored for a strategy. |
2 | predict functions in astra by default put the model on eval mode but also allow to set eval_mode to False . This can be useful for techniques like MC dropout. |
3 | train_fn from astra.torch.utils works for all types of models and losses which may or may not be from astra . |
4 | Though F1 score can be computed from precision and recall, we explicitely use F1 score formula to allow transparency and to avoid computing TP multiple times. |
Install
Stable version:
pip install astra-lib
Latest version:
pip install git+https://github.com/sustainability-lab/ASTRA
Contributing
Please go through the contributing guidelines before making a contribution.
Useful Code Snippets
Data
Load Data
from astra.torch.data import load_mnist, load_cifar_10
data = load_cifar_10()
print(data)
Files already downloaded and verified
Files already downloaded and verified
CIFAR-10 Dataset
length of dataset: 60000
shape of images: torch.Size([3, 32, 32])
len of classes: 10
classes: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
dtype of images: torch.float32
dtype of labels: torch.int64
range of image values: min=0.0, max=1.0
Models
MLPs
from astra.torch.models import MLPRegressor
mlp = MLPRegressor(input_dim=100, hidden_dims=[128, 64], output_dim=10, activation="relu", dropout=0.1)
print(mlp)
MLPRegressor(
(featurizer): MLP(
(dropout): Dropout(p=0.1, inplace=True)
(input_layer): Linear(in_features=100, out_features=128, bias=True)
(hidden_layer_1): Linear(in_features=128, out_features=64, bias=True)
)
(regressor): Linear(in_features=64, out_features=10, bias=True)
)
CNNs
from astra.torch.models import CNNClassifier
cnn = CNNClassifier(
image_dims=(32, 32),
kernel_size=5,
input_channels=3,
conv_hidden_dims=[32, 64],
dense_hidden_dims=[128, 64],
n_classes=10,
)
print(cnn)
CNNClassifier(
(featurizer): CNN(
(activation): ReLU()
(max_pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(input_layer): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(hidden_layer_1): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(aggregator): Identity()
(flatten): Flatten(start_dim=1, end_dim=-1)
)
(classifier): MLPClassifier(
(featurizer): MLP(
(activation): ReLU()
(dropout): Dropout(p=0.0, inplace=True)
(input_layer): Linear(in_features=4096, out_features=128, bias=True)
(hidden_layer_1): Linear(in_features=128, out_features=64, bias=True)
)
(classifier): Linear(in_features=64, out_features=10, bias=True)
)
)
EfficientNets
import torch
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
from astra.torch.models import EfficientNetClassifier
# Pretrained model
model = EfficientNetClassifier(model=efficientnet_b0, weights=EfficientNet_B0_Weights.DEFAULT, n_classes=10)
# OR without pretrained weights
# model = EfficientNetClassifier(model=efficientnet_b0, weights=None, n_classes=10)
x = torch.rand(10, 3, 224, 224)
out = model(x)
print(out.shape)
torch.Size([10, 10])
ViT
import torch
from torchvision.models import vit_b_16, ViT_B_16_Weights
from astra.torch.models import ViTClassifier
model = ViTClassifier(vit_b_16, ViT_B_16_Weights.DEFAULT, n_classes=10)
x = torch.rand(10, 3, 224, 224) # (batch_size, channels, h, w)
out = model(x)
print(out.shape)
torch.Size([10, 10])
Training
Train Function Usage
import torch
import torch.nn as nn
import numpy as np
from astra.torch.utils import train_fn
from astra.torch.models import CNNClassifier
torch.autograd.set_detect_anomaly(True)
X = torch.rand(100, 3, 28, 28)
y = torch.randint(0, 2, size=(200,)).reshape(100, 2).float()
model = CNNClassifier(
image_dims=(28, 28), kernel_size=5, input_channels=3, conv_hidden_dims=[4], dense_hidden_dims=[2], n_classes=2
)
# Let train_fn do the optimization for you
iter_losses, epoch_losses = train_fn(
model, input=X, output=y, loss_fn=nn.CrossEntropyLoss(), lr=0.1, epochs=5, verbose=False
)
print(np.array(epoch_losses).round(2))
# OR
# Define your own optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
iter_losses, epoch_losses = train_fn(
model,
input=X,
output=y,
loss_fn=nn.MSELoss(),
optimizer=optimizer,
verbose=False,
epochs=5,
)
print(np.array(epoch_losses).round(2))
# Get the state_dict of the model at each epoch
(iter_losses, epoch_losses), state_dict_history = train_fn(
model,
input=X,
output=y,
loss_fn=nn.MSELoss(),
lr=0.1,
epochs=5,
verbose=False,
return_state_dict=True,
)
print(np.array(epoch_losses).round(2))
[0.65 0.64 0.64 0.64 0.64]
[0.28 0.26 0.25 0.25 0.25]
[0.26 0.25 0.25 0.25 0.25]
Advanced Usage
import torch
import torch.nn as nn
import numpy as np
from astra.torch.utils import train_fn
from astra.torch.models import AstraModel
class CustomModel(AstraModel):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
self.inp1_linear = nn.Linear(2, 1)
def forward(self, x, inp1, fixed_bias):
return self.linear(x) + self.inp1_linear(inp1) + fixed_bias
def custom_loss_fn(model_output, output, norm_factor):
loss_fn = nn.MSELoss()
loss_val = loss_fn(model_output, output)
return loss_val / norm_factor
X = torch.randn(10, 2)
y = torch.randn(10, 1)
inp1 = torch.randn(10, 2)
bias = torch.randn(1)
norm_factor = torch.randn(1)
model = CustomModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
(iter_losses, epoch_losses), state_dict_history = train_fn(
model,
input=X, # Can be None if model.forward() does not require input
model_kwargs={"inp1": inp1, "fixed_bias": bias},
output=y, # Can be None if loss_fn does not require output
loss_fn=custom_loss_fn,
loss_fn_kwargs={"norm_factor": norm_factor},
optimizer=optimizer,
epochs=5,
shuffle=True,
verbose=True,
return_state_dict=True,
)
print("Epoch_losses", np.array(epoch_losses).round(2))
Epoch_losses [2.61 1.54 2.71 2.61 2.65]
0%| | 0/5 [00:00<?, ?it/s]
Loss: 2.60764122: 0%| | 0/5 [00:00<?, ?it/s]
Loss: 2.60764122: 20%|██ | 1/5 [00:00<00:02, 1.49it/s]
Loss: 1.54055369: 20%|██ | 1/5 [00:00<00:02, 1.49it/s]
Loss: 2.71163487: 20%|██ | 1/5 [00:00<00:02, 1.49it/s]
Loss: 2.60861230: 20%|██ | 1/5 [00:00<00:02, 1.49it/s]
Loss: 2.64996576: 20%|██ | 1/5 [00:00<00:02, 1.49it/s]
Loss: 2.64996576: 100%|██████████| 5/5 [00:00<00:00, 7.39it/s]
Others
Count number of parameters in a model
from astra.torch.utils import count_params
from astra.torch.models import MLPRegressor
mlp = MLPRegressor(input_dim=2, hidden_dims=[5, 6], output_dim=1)
n_params = count_params(mlp)
print(n_params)
{'total_params': 58, 'trainable_params': 58, 'non_trainable_params': 0}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
astra-lib-0.0.3.tar.gz
(174.0 kB
view details)
File details
Details for the file astra-lib-0.0.3.tar.gz
.
File metadata
- Download URL: astra-lib-0.0.3.tar.gz
- Upload date:
- Size: 174.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9263f80a420bd2e53866854c3c71f284f55ceb630c8e253269234988a98e3cf5 |
|
MD5 | a3d5c054caa34f00d8cf75478e7c1b74 |
|
BLAKE2b-256 | b9fb4af309f685a54a46362233c48242031ae1f3406d84eadf072ed5e790ce05 |