Skip to main content

Astrometry.net solver interface

Project description

Astrometry

Astrometry turns a list of star positions into a pixel-to-sky transformation (WCS) by calling C functions from the Astrometry.net library (https://astrometry.net).

Astrometry.net star index files ("series") are automatically downloaded when required.

This package is useful for solving plates from a Python script, comparing star extraction methods, or hosting a simple local version of Astrometry.net with minimal dependencies. See https://github.com/dam90/astrometry for a more complete self-hosting solution.

Unlike Astrometry.net, Astrometry does not include FITS parsing or image pre-processing algorithms. Stars must be provided as a list of pixel positions.

This library works on Linux and macOS, but not Windows (at the moment). WSL should work but has not been tested.

We are not the authors of the Astrometry.net library. You should cite works from https://astrometry.net/biblio.html if you use the Astrometry.net algorithm via this package.

Get started

python3 -m pip install astrometry
import astrometry

solver = astrometry.Solver(
    astrometry.series_5200.index_files(
        cache_directory="astrometry_cache",
        scales={6},
    )
)

stars = [
    [388.9140568247906, 656.5003281719216],
    [732.9210858972549, 473.66395545775106],
    [401.03459504299843, 253.788113189415],
    [312.6591868096163, 624.7527729425295],
    [694.6844564647456, 606.8371776658344],
    [741.7233477959561, 344.41284826261443],
    [867.3574610200455, 672.014835980283],
    [1063.546651153479, 593.7844603550848],
    [286.69070190952704, 422.170016812049],
    [401.12779619355155, 16.13543616977013],
    [205.12103484692776, 698.1847350789413],
    [202.88444768690894, 111.24830187635557],
    [339.1627757703069, 86.60739435924549],
]

solution = solver.solve(
    stars=stars,
    size_hint=None,
    position_hint=None,
    solution_parameters=astrometry.SolutionParameters(),
)

if solution.has_match():
    print(f"{solution.best_match().center_ra_deg=}")
    print(f"{solution.best_match().center_dec_deg=}")
    print(f"{solution.best_match().scale_arcsec_per_pixel=}")

solve is thread-safe. It can be called any number of times from the same Solver object.

Examples

Provide size and position hints

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=astrometry.SizeHint(
        lower_arcsec_per_pixel=1.0,
        upper_arcsec_per_pixel=2.0,
    ),
    position_hint=astrometry.PositionHint(
        ra_deg=65.7,
        dec_deg=36.2,
        radius_deg=1.0,
    ),
    solution_parameters=...
)

Print progress information (download and solve)

import astrometry
import logging

logging.getLogger().setLevel(logging.INFO)

solver = ...
solution = ...

Print field stars metadata

Astrometry extracts metadata from the star index ("series"). See Choosing series for a description of the available data.

import astrometry

solver = ...
solution = ...

if solution.has_match():
    for star in solution.best_match().stars:
        print(f"{star.ra_deg}º, {star.dec_deg}º:", star.metadata)

Calculate field stars pixel positions with astropy

import astrometry

solver = ...
solution = ...

if solution.has_match():
    wcs = solution.best_match().astropy_wcs()
    pixels = wcs.all_world2pix(
        [[star.ra_deg, star.dec_deg] for star in solution.best_match().stars],
        0,
    )
    # pixels is a len(solution.best_match().stars) x 2 numpy array of float values

astropy.wcs.WCS provides many more functions to probe the transformation properties and convert from and to pixel coordinates. See https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html for details. Astropy (https://pypi.org/project/astropy/) must be installed to use this method.

Print series description and size (without downloading them)

import astrometry

print(astrometry.series_5200_heavy.description)
print(astrometry.series_5200_heavy.size_as_string({2, 3, 4}))

See Choosing Series for a list of available series.

Disable tune-up and distortion

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        sip_order=0,
        tune_up_logodds_threshold=None,
    ),
)

Stop the solver early using the log-odds callback

Return after the first match

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: astrometry.Action.STOP,
    ),
)

Return early if the best log-odds are larger than 100.0

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: (
            astrometry.Action.STOP
            if logodds_list[0] > 100.0
            else astrometry.Action.CONTINUE
        ),
    ),
)

Return early if there are at least ten matches

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: (
            astrometry.Action.STOP
            if len(logodds_list) >= 10.0
            else astrometry.Action.CONTINUE
        ),
    ),
)

Return early if the three best matches are similar

import astrometry

def logodds_callback(logodds_list: list[float]) -> astrometry.Action:
    if len(logodds_list) < 3:
        return astrometry.Action.CONTINUE
    if logodds_list[1] > logodds_list[0] - 10 and logodds_list[2] > logodds_list[0] - 10:
        return astrometry.Action.STOP
    return astrometry.Action.CONTINUE


solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=logodds_callback,
    ),
)

Choosing series

This library downloads series from http://data.astrometry.net. A solver can be instantiated with multiple series and scales as follows:

import astrometry

solver = astrometry.Solver(
    astrometry.series_5200.index_files(
        cache_directory="astrometry_cache",
        scales={4, 5, 6},
    )
    + astrometry.series_4200.index_files(
        cache_directory="astrometry_cache",
        scales={6, 7, 12},
    )
)

Astrometry.net gives the following recommendations to choose a scale:

Each index file contains a large number of “skymarks” (landmarks for the sky) that allow our solver to identify your images. The skymarks contained in each index file have sizes (diameters) within a narrow range. You probably want to download index files whose quads are, say, 10% to 100% of the sizes of the images you want to solve.

For example, let’s say you have some 1-degree square images. You should grab index files that contain skymarks of size 0.1 to 1 degree, or 6 to 60 arcminutes. Referring to the table below, you should [try index files with scales 3 to 9]. You might find that the same number of fields solve, and faster, using just one or two of the index files in the middle of that range - in our example you might try [5, 6 and 7].

-- http://astrometry.net/doc/readme.html

Scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Skymark diameter (arcmin) [2.0, 2.8] [2.8, 4.0] [4.0, 5.6] [5.6, 8.0] [8, 11] [11, 16] [16, 22] [22, 30] [30, 42] [42, 60] [60, 85] [85, 120] [120, 170] [170, 240] [240, 340] [340, 480] [480, 680] [680, 1000] [1000, 1400] [1400, 2000]

The table below lists series sizes and properties (we copied the descriptions from http://data.astrometry.net). You can access a series' object with astrometry.series_{name} (for example astrometry.series_4200).

Name Total size Scales Description Metadata
4100 0.36 GB [7, 19] built from the Tycho-2 catalog, good for images wider than 1 degree, recommended MAG_BT: float
MAG_VT: float
MAG_HP: float
MAG: float
4200 33.78 GB [0, 19] built from the near-infared 2MASS survey, runs out of stars at the low end, most users will probably prefer 4100 or 5200 j_mag: float
5000 76.24 GB [0, 7] an older version from Gaia-DR2 but without Tycho-2 stars merged in, our belief is that series_5200 will work better than this one source_id: int
phot_g_mean_mag: float
phot_bp_mean_mag: float
phot_rp_mean_mag: float
parallax: float
parallax_error: float
pmra: float
pmra_error: float
pmdec: float
pmdec_error: float
ra: float
dec: float
ref_epoch: float
5200 36.14 GB [0, 6] LIGHT version built from Tycho-2 + Gaia-DR2, good for images narrower than 1 degree, combine with 4100-series for broader scale coverage, the LIGHT version contains smaller files with no additional Gaia-DR2 information tagged along, recommended -
5200_heavy 79.67 GB [0, 6] HEAVY version same as 5200, but with additional Gaia-DR2 information (magnitude in G, BP, RP, proper motions and parallaxes), handy if you want that extra Gaia information for matched stars ra: float
dec: float
mag: float
ref_cat: str
ref_id: int
pmra: float
pmdec: float
parallax: float
ra_ivar: float
dec_ivar: float
pmra_ivar: float
pmdec_ivar: float
parallax_ivar: float
phot_bp_mean_mag: float
phot_rp_mean_mag: float
6000 1.20 GB [4, 6] very specialized, uses GALEX Near-UV measurements, and only a narrow range of scales fuv_mag: float
nuv_mag: float
6100 1.58 GB [4, 6] very specialized, uses GALEX Far-UV measurements, and only a narrow range of scales fuv_mag: float
nuv_mag: float

The table below indicates the total file size for each scale (most series have multiple index files per scale).

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
4100 - - - - - - - 165.00 MB 94.55 MB 49.77 MB 24.87 MB 10.21 MB 5.30 MB 2.73 MB 1.38 MB 740.16 kB 408.96 kB 247.68 kB 187.20 kB 144.00 kB
4200 14.22 GB 9.25 GB 5.06 GB 2.63 GB 1.31 GB 659.09 MB 328.25 MB 165.44 MB 81.84 MB 41.18 MB 20.52 MB 8.02 MB 4.17 MB 2.16 MB 1.10 MB 596.16 kB 339.84 kB 213.12 kB 164.16 kB 132.48 kB
5000 34.79 GB 20.19 GB 10.74 GB 5.44 GB 2.71 GB 1.36 GB 676.79 MB 340.73 MB - - - - - - - - - - - -
5200 17.20 GB 9.49 GB 4.86 GB 2.45 GB 1.22 GB 614.89 MB 307.72 MB - - - - - - - - - - - - -
5200_heavy 36.46 GB 21.20 GB 11.29 GB 5.72 GB 2.85 GB 1.43 GB 714.56 MB - - - - - - - - - - - - -
6000 - - - - 892.55 MB 457.66 MB 233.23 MB - - - - - - - - - - - - -
6100 - - - - 599.33 MB 384.09 MB 214.79 MB - - - - - - - - - - - - -

Documentation

Solver

class Solver:
    def __init__(self, index_files: list[pathlib.Path]): ...

    def solve(
        self,
        stars: typing.Iterable[SupportsFloatMapping],
        size_hint: typing.Optional[SizeHint],
        position_hint: typing.Optional[PositionHint],
        solution_parameters: SolutionParameters,
    ) -> Solution: ...

solve is thread-safe and can be called any number of times.

  • index_files: List of index files to use for solving. The list need not come from a Series object. Series subsets and combinations are possible as well.
  • star: iterator over a list of pixel coordinates for the input stars.
  • size_hint: Optional angular pixel size range (SizeHint). Significantly speeds up solve when provided. If size_hint is None, the range [0.1, 1000.0] is used. This default range can be changed by setting astrometry.DEFAULT_LOWER_ARCSEC_PER_PIXEL and astrometry.DEFAULT_UPPER_ARCSEC_PER_PIXEL to other values.
  • position_hint: Optional field center Ra/Dec coordinates and error radius (PositionHint). Significantly speeds up solve when provided. If position_hint is None, the entire sky is used (radius_deg = 180.0).
  • solution_parameters: Advanced solver parameters (SolutionParameters)

SizeHint

@dataclasses.dataclass
class SizeHint:
    lower_arcsec_per_pixel: float
    upper_arcsec_per_pixel: float

lower_arcsec_per_pixel and upper_arcsec_per_pixel must be larger than 0 and upper_arcsec_per_pixel must be smaller than or equal to upper_arcsec_per_pixel.

PositionHint

@dataclasses.dataclass
class PositionHint:
    ra_deg: float
    dec_deg: float
    radius_deg: float
  • ra_deg must be in the range [0.0, 360.0[.
  • dec_deg must be in the range [-90.0, 90.0].
  • radius must be larger than or equal to zero.

All values are in degrees and must use the same frame of reference as the index files. Astrometry.net index files use J2000 FK5 (https://docs.astropy.org/en/stable/api/astropy.coordinates.FK5.html). ICRS and FK5 differ by less than 0.1 arcsec (https://www.iers.org/IERS/EN/Science/ICRS/ICRS.html).

Action

class Action(enum.Enum):
    STOP = 0
    CONTINUE = 1

Parity

class Parity(enum.IntEnum):
    NORMAL = 0
    FLIP = 1
    BOTH = 2

SolutionParameters

@dataclasses.dataclass
class SolutionParameters:
    solve_id: typing.Optional[str] = None
    uniformize_index: bool = True
    deduplicate: bool = True
    sip_order: int = 3
    sip_inverse_order: int = 0
    distance_from_quad_bonus: bool = True
    positional_noise_pixels: float = 1.0
    distractor_ratio: float = 0.25
    code_tolerance_l2_distance: float = 0.01
    minimum_quad_size_pixels: typing.Optional[float] = None
    minimum_quad_size_fraction: float = 0.1
    maximum_quad_size_pixels: float = 0.0
    maximum_quads: int = 0
    maximum_matches: int = 0
    parity: Parity = Parity.BOTH
    tune_up_logodds_threshold: typing.Optional[float] = 14.0
    output_logodds_threshold: float = 21.0
    slices_generator: typing.Callable[[int], typing.Iterable[tuple[int, int]]] = astrometry.batches_generator(25)
    logodds_callback: typing.Callable[[list[float]], Action] = lambda _: Action.CONTINUE
  • solve_id: Optional plate identifier used in logging messages. If solve_id is None, it is automatically assigned a unique integer. The value can be retrieved from the Solution object (solution.solve_id).
  • uniformize_index: Uniformize field stars at the matched index scale before verifying a match.
  • deduplicate: De-duplicate field stars before verifying a match.
  • sip_order: Polynomial order of the Simple Imaging Polynomial distortion (see https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf). 0 disables SIP distortion. tune_up_logodds_threshold must be None if sip_order is 0.
  • sip_inverse_order: Polynomial order of the inversee Simple Polynomial distortion. Usually equal to sip_order. 0 means "equal to sip_order".
  • distance_from_quad_bonus: Assume that stars far from the matched quad will have larger positional variance.
  • positional_noise_pixels: Expected error on the positions of stars.
  • distractor_ratio: Fraction of distractors in the range ]0, 1].
  • code_tolerance_l2_distance: Code tolerance in 4D codespace L2 distance.
  • minimum_quad_size_pixels: Minimum size of field quads to try, None calculates the size automatically as minimum_quad_size_fraction * min(Δx, Δy), where Δx (resp. Δy) is the maximum x distance (resp. y distance) between stars in the field.
  • minimum_quad_size_fraction: Only used if minimum_quad_size_pixels is None (see above).
  • maximum_quad_size_pixels: Maximum size of field quads to try, 0.0 means no limit.
  • maximum_quads: Number of field quads to try, 0 means no limit.
  • maximum_matches: Number of quad matches to try, 0 means no limit.
  • parity: Parity.NORMAL does not flip the axes, Parity.FLIP does, and Parity.BOTH tries flipped and non-flipped axes (at the cost of doubling computations).
  • tune_up_logodds_threshold: Matches whose log-odds are larger than this value are tuned-up (SIP distortion estimation) and accepted if their post-tune-up log-odds are larger than output_logodds_threshold. None disables tune-up and distortion estimation (SIP). The default Astrometry.net value is math.log(1e6).
  • output_logodds_threshold: Matches whose log-odds are larger than this value are immediately accepted (added to the solution matches). The default Astrometry.net value is math.log(1e9).
  • slices_generator: User-provided function that takes a number of stars as parameter and returns an iterable (such as list) of two-elements tuples representing ranges. The first tuple item (start) is included while the second tuple item (end) is not. The returned ranges can have a variable size and/or overlap. The algorithm compares each range with the star catalogue sequentially. Small ranges significantly speed up the algorithm but increase the odds of missing matches. astrometry.batches_generator(n) generates non-overlapping batches of n stars.
  • logodds_callback: User-provided function that takes a list of matches log-odds as parameter and returns an astrometry.Action object. astrometry.Action.CONTINUE tells the solver to keep searching for matches whereas astrometry.Action.STOP tells the solver to return the current matches immediately. The log-odds list is sorted from highest to lowest value and should not be modified by the callback function.

Accepted matches are always tuned up, even if they hit tune_up_logodds_threshold and were already tuned-up. Since log-odds are compared with the thresholds before the tune-up, the final log-odds are often significantly larger than output_logodds_threshold. Set tune_up_logodds_threshold to a value larger than or equal to output_logodds_threshold to disable the first tune-up, and None to disable tune-up altogether. Tune-up logic is equivalent to the following Python snippet:

# This (pseudo-code) snippet assumes the following definitions:
# match: candidate match object
# log_odds: current match log-odds
# add_to_solution: appends the match to the solution list
# tune_up: tunes up a match object and returns the new match and the new log-odds
if tune_up_logodds_threshold is None:
    if log_odds >= output_logodds_threshold:
        add_to_solution(match)
else:
    if log_odds >= output_logodds_threshold:
        tuned_up_match, tuned_up_loggods = tune_up(match)
        add_to_solution(tuned_up_match)
    elif log_odds >= tune_up_logodds_threshold:
        tuned_up_match, tuned_up_loggods = tune_up(match)
        if tuned_up_loggods >= output_logodds_threshold:
            tuned_up_twice_match, tuned_up_twice_loggods = tune_up(tuned_up_match)
            add_to_solution(tuned_up_twice_match)

Astrometry.net gives the following description of the tune-up algorithm. See tweak2 in astrometry.net/solver/tweak2.c for the implementation.

Given an initial WCS solution, compute SIP polynomial distortions using an annealing-like strategy. That is, it finds matches between image and reference catalog by searching within a radius, and that radius is small near a region of confidence, and grows as you move away. That makes it possible to pick up more distant matches, but they are downweighted in the fit. The annealing process reduces the slope of the growth of the matching radius with respect to the distance from the region of confidence.

-- astrometry.net/include/astrometry/tweak2.h

Solution

@dataclasses.dataclass
class Solution:
    solve_id: str
    matches: list[Match]

    def has_match(self) -> bool: ...

    def best_match(self) -> Match: ...

    def to_json(self) -> str: ...

    @classmethod
    def from_json(cls, solution_as_json: str) -> Solution: ...

matches are sorted in descending log-odds order. best_match returns the first match in the list. to_json and from_json may be used to save and load solutions.

Match

@dataclasses.dataclass
class Match:
    logodds: float
    center_ra_deg: float
    center_dec_deg: float
    scale_arcsec_per_pixel: float
    index_path: pathlib.Path
    stars: tuple[Star, ...]
    quad_stars: tuple[Star, ...]
    wcs_fields: dict[str, tuple[typing.Any, str]]

    def astropy_wcs(self) -> astropy.wcs.WCS: ...
  • logodds: Log-odds (https://en.wikipedia.org/wiki/Logit) of the match.
  • center_ra_deg: Right ascension of the stars bounding box's center, in degrees and in the frame of reference of the index (J200 FK5 for Astrometry.net series).
  • center_dec_deg: Declination of the stars bounding box's center in degrees and in the frame of reference of the index (J200 FK5 for Astrometry.net series).
  • scale_arcsec_per_pixel: Pixel scale in arcsec per pixel.
  • index_path: File system path of the index file used for this match.
  • stars: List of visible index stars. This list is almost certainly going to differ from the input stars list.
  • quad_stars: The index stars subset (usually 4 but can be 3 or 5) used in the hash code search step (see https://arxiv.org/pdf/0910.2233.pdf, 2. Methods).
  • wcs_fields: WCS fields describing the transformation between pixel coordinates and world coordinates. This dictionary can be passed directly to astropy.wcs.WCS.

astropy_wcs generates an Astropy WCS object. Astropy (https://pypi.org/project/astropy/) must be installed to use this method. See Calculate field stars pixel positions with astropy for details.

Star

@dataclasses.dataclass
class Star:
    ra_deg: float
    dec_deg: float
    metadata: dict[str, typing.Any]

ra_deg and dec_deg are in degrees and use the same frame of reference as the index files. Astrometry.net index files use J2000 FK5 (https://docs.astropy.org/en/stable/api/astropy.coordinates.FK5.html). ICRS and FK5 differ by less than 0.1 arcsec (https://www.iers.org/IERS/EN/Science/ICRS/ICRS.html).

The contents of metadata depend on the data available in index files. See Series for details.

Series

@dataclasses.dataclass
class Series:
    name: str
    description: str
    scale_to_sizes: dict[int, tuple[int, ...]]
    url_pattern: str

    def size(self, scales: typing.Optional[set[int]] = None): ...

    def size_as_string(self, scales: typing.Optional[set[int]] = None): ...

    def index_files(
        self,
        cache_directory: typing.Union[bytes, str, os.PathLike],
        scales: typing.Optional[set[int]] = None,
    ) -> list[pathlib.Path]: ...
  • name defines the cache subdirectory name.
  • description is a copy of the text description in http://data.astrometry.net.
  • scale_to_sizes maps each available HEALPix resolution to index files sizes in bytes. The smaller the scale, the larger the number of HEALPix subdivisions.
  • url_pattern is the base pattern used to generate file download links.
  • size returns the cumulative file sizes for the given scales in bytes. If scales is None, all the scales available for the series are used.
  • size_as_string returns a human-readable string representation of size.
  • index_files returns index files paths for the given scales (or all available scales if scales is None). This function downloads files that are not already in the cache directory. cache_directory is created if it does not exist. Download automatically resumes for partially downloaded files.

Change the constants astrometry.CHUNK_SIZE, astrometry.DOWNLOAD_SUFFIX and astrometry.TIMEOUT to configure the downloader parameters.

batches_generator

def batches_generator(
    batch_size: int,
) -> typing.Callable[[int], typing.Iterable[tuple[int, int]]]:
    ...
  • batch_size sets the size of the generated batches.

batches_generator returns a slices generator compatible with SolutionParameters.slices_generator. The slices are non-overlapping and non-full slices are ignored. For instance, a batch size of 25 over 83 stars would generate the slices (0, 25), (25, 50), and (50, 75).

SupportsFloatMapping

class SupportsFloatMapping(typing.Protocol):
    def __getitem__(self, index: typing.SupportsIndex, /) -> typing.SupportsFloat:
        ...

Contribute

Clone this repository and pull its submodule:

git clone --recursive https://github.com/neuromorphicsystems/astrometry.git
cd astrometry

or

git clone https://github.com/neuromorphicsystems/astrometry.git
cd astrometry
git submodule update --recursive

Format the code:

clang-format -i astrometry_extension/astrometry_extension.c astrometry_extension/astrometry_extension_utilities.h

Build a local version:

python3 -m pip install -e .
# use 'CC="ccache clang" python3 -m pip install -e .' to speed up incremental builds

Publish

  1. Bump the version number in setup.py.

  2. Create a new release on GitHub.

MSVC compatibility (work in progress)

  • fitsbin.c, kdtree_internal.c, kdtree_internal_fits.c, solver.c: replace Variable Length Arrays (VAL) with _alloca (type name[size] -> type* name = _alloca(size))
  • fitsbin.c, fitsioutils.c, fitstable.c: cast void* to char* to enable pointer arithmetic
  • anqfits.c, verify.c: #define debug(args...) -> #define debug(...)
  • qfits_time.c: remove #include <pwd.h>
  • log.h, keywords.h: remove __attribute__ directives
  • bl.c: remove redundant bl.inc and bl_nl.c includes
  • replace all POSIX calls (file IO, network, select...). This requires significant effort when targeting the entire Astrometry.net library. It might be less complicated with Astrometry, which uses only a subset of Astrometry.net.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

astrometry-4.1.2.tar.gz (501.7 kB view details)

Uploaded Source

Built Distributions

astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (510.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (532.5 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (541.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (510.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (532.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (541.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (524.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (543.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (541.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.1.2-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp311-cp311-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

astrometry-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp311-cp311-macosx_11_0_arm64.whl (570.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

astrometry-4.1.2-cp311-cp311-macosx_10_9_x86_64.whl (668.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

astrometry-4.1.2-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp310-cp310-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

astrometry-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp310-cp310-macosx_11_0_arm64.whl (570.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

astrometry-4.1.2-cp310-cp310-macosx_10_9_x86_64.whl (668.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

astrometry-4.1.2-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp39-cp39-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

astrometry-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp39-cp39-macosx_11_0_arm64.whl (570.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

astrometry-4.1.2-cp39-cp39-macosx_10_9_x86_64.whl (668.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

astrometry-4.1.2-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp38-cp38-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

astrometry-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp38-cp38-macosx_11_0_arm64.whl (570.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

astrometry-4.1.2-cp38-cp38-macosx_10_9_x86_64.whl (668.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

astrometry-4.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp37-cp37m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

astrometry-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp37-cp37m-macosx_10_9_x86_64.whl (668.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

astrometry-4.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

astrometry-4.1.2-cp36-cp36m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

astrometry-4.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

astrometry-4.1.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.1.2-cp36-cp36m-macosx_10_9_x86_64.whl (668.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file astrometry-4.1.2.tar.gz.

File metadata

  • Download URL: astrometry-4.1.2.tar.gz
  • Upload date:
  • Size: 501.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for astrometry-4.1.2.tar.gz
Algorithm Hash digest
SHA256 cd208c4a17edada174a42981b7c77bcd970dc07194eda8c8bfb5c008b3280177
MD5 2195bc75693f063e79b2c2c50f7ac5cf
BLAKE2b-256 0a369ee24e34594ee295827b947e64135a86708308e9d3d5b471078ad1d7653e

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c55f821db82a9c01184863c0980a7b43cb8bd0d3d052fb68fdc1b835f8d4107
MD5 810c3bfb1f07d56d5dc54aaa446b2872
BLAKE2b-256 77f0f4153b4bd2b622ce3fe636048c106da7b65979b7700d27da3cbe9f32f650

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6bdab4d706549ccfc7e0f8c2a97d605818b39d436bb21e971dfa2f5b7093752e
MD5 32bf1ad1e87c3b7ff133ccabc3a60290
BLAKE2b-256 70b611b475c828e2c1c87f573d8a6c3259b411ebcb468655ac9e3873b15ef4ad

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 920295858db24ba874f625c2085b83c01665dac7afa44725dd887671f3a83c8c
MD5 87e3b4836d48a9924271498eafa96562
BLAKE2b-256 3f539b08e4d0c6fb11e26ad776564b76753b3559844dcb78796728599e276cec

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88484a069b70ab3070e1eef73ba5b2e150a31b01eb511ae025bd9320098ddb1d
MD5 96baf474876e13abd60d172f78a26b1e
BLAKE2b-256 987df00de9d86de602a9699cee1fcd1445772de72917770ec4599b48c5aa939b

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c0c56bdad83139af0d88607767e4e9ef59ff999be50fb118d5b1143a819a6a17
MD5 d346064103bc2c50f4ac68883c8e4f78
BLAKE2b-256 87a6104ad21bee14fa2d73e580d8933c3b0b04fe5cd3074e9133d1d2d0c61e3f

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 903415b42ceb29ed6b9fe4cea09d75de378f6d8b7df4f0eb116ea2bb3f4a8dcb
MD5 ff1613e6f5f391d10ca3e0033eb8b1d2
BLAKE2b-256 c1c0f2c7ab4d8656c5c330ccf4843894066f475612046b5bf427080e431d4917

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 276868f8d453160f3998d6a735c25f413fb7121858cfeb7867c6331b5f11b9e0
MD5 4c001fb452324d1e860b5161d73fa759
BLAKE2b-256 75bc4f9923a1d7454ea5ba9e6ab56fbdd4c9d2c0e963660fc04d1bcd87d50678

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5625bca0a934796881c2ce2a68f0779405e8075f3641269b71f4cc3e6f27701f
MD5 413ee0bd4e8264f1a096f22725d208b9
BLAKE2b-256 63cf3b2e0c81985980f066b06bc36eb18db2e61a4a480448ea7ea333685bf7eb

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e462ae7a2b290a535bcc1169badcb11a29f1add36eb2c0c57e5f2ee5e6087b3
MD5 308ff9a8c36e18ab5119a3c6ef05a1e3
BLAKE2b-256 df7891fcb2f490060214da53c086129cd4a7f8285df649367df1772e836bd182

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38b6d54deb515d7883370cde444d444de47bb2738921ea8366793b32d46bbef7
MD5 30b5d0aac401a3a3bc55f5acf4b0e1cc
BLAKE2b-256 7433b1a197d2253440c6f8c1bc03463ac5aaa0f05ae74fda67a7c1295d0118f4

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 39f7aa7914cd17a2b40aa425da7f1b225c2597a92ba8350470c0c5c44a3852bb
MD5 a562fef7c1564af2114e576b0638d6da
BLAKE2b-256 c94685a4662e0606b72baa327cb148bcb805398fdbff79effaccfd47037571a2

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bfd12d099129b67e3fc81dada6ec4c6bd5aa0e335a94f23c55dc31f06b04774
MD5 7cc825630ead14813c6eb1a20ad77e6d
BLAKE2b-256 982fdbdaed97b3a0c0b364d3689fd208215c15ba4521fd886cee3c54f3239d9e

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0f216f55a1565655eb010f7a441dc063aa32e6e83a50c7e1bdd26f1dbf09863
MD5 3a066c7f5f41a0a50edb2e971b3c1183
BLAKE2b-256 51fe033ffa2aad5fadd8ab5e127c7c598bc51313fab4c604806b8494ec9d8b2e

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acd708ad63319f653402cd51e3e1b362a289c8c462db634dbc90dfe5bb1531b6
MD5 4e54a1e10bfe625fcde09f6a5c7c4f99
BLAKE2b-256 e7d211f95f6049b1002b676dd268320d0264aa8ca11743e6a15ba3305fe00c04

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db0442ba302eab1192da76a6c93df71fcacfb4b129c33ad96e30ad5bf2ad0648
MD5 9f05c22d817428f08e521f223f358184
BLAKE2b-256 695dfef69b3043b38c1a76189d1f0c8f9eceefa4f6a2a8a4df803db593df3232

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 06503dd8a420db0f22bf08659db5c460d38619e78122a23e7ac136d49ae423b6
MD5 717233c7ce2ba43489ff66ab59d2ded4
BLAKE2b-256 9ad44f00e52328825d01cfd4cd9f6744193236bcefe360218f15415ce2ab685c

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0867df53d83c0e74603d9aa5184bf6c321dacd0fe057a94eb49bc9df5a771985
MD5 415ee29a8ea2e514c5e5a58a0fc57e62
BLAKE2b-256 0acb52aa248ba9e7d891711a47dbf9cf37ec66fff76af1e38ec7d18a676eb232

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d81ee0b35e0dabaf2a8510c70f67b1b270cb3c99c7004eb930708f621c809620
MD5 d63a3a4eb8a6258e646957a0592f2da1
BLAKE2b-256 d17353c150ede046a54f931ce82e40534ffee8c8789a691d00c922a19af5a07b

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11e2a3806b8c7e5ad80e653b8b91809972346f0d77946682f250831272a2d678
MD5 4edbdafff64d4dd1f35c9bc8768fac21
BLAKE2b-256 e74e98cf7915f895ba9bf02199207066a5ad60ae9b14333a436e1eb3518a27f8

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dcabd5ca5b5f32cd08bb1a8b711abde28411a96d0539f18a69ec9317600f5205
MD5 f5dc5c4e1530dba903e4dc91fef7d702
BLAKE2b-256 98cd240a51f3d9546102b37fb323690cfc7c50c167cc130b2b9a72d38ab3ff85

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40c90491a31981f8f8d9bef3bed9f608de762eb8b641a60142d4533160db0a5b
MD5 f7cd27e06befd9030831cd32f2c9cc94
BLAKE2b-256 8cc3d2f94069b8c3385c223d15071d3aaac65412fdc3fe01dc2ff7c7e6ae618b

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 16b57b79fcff255bfe85ed72aa54c21ee60c1a5839e7315484a1fdcd1cc54d7d
MD5 26829a0935270a246828c79b267908b2
BLAKE2b-256 59242f09ddd39bec44444d1a52143c694eec07e31c50257f4d2ad68642453e2e

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 22c00a1c69e760a83fb612e9f060f1c8f91cfe3265a814c50c62ffda938952c1
MD5 ee19275611fbe5427c0003aea5c4483e
BLAKE2b-256 66616b7477496de3d0b3e9bbca6cc2282521b570f6766226f2ab5dccafab6fad

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a784f7b45159f067af33f17a28c49e8f17ad137f4646707a13c98f3c04eeb030
MD5 890907fc62654ebe6a4a3718785ef6ec
BLAKE2b-256 aab21bdc87cde8edf0e7c47aac7f61d4e7169564e8ba9a8979b73a9a77618014

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6af506125b393a9a40af18ccdfaa43acf8f0d5104784ef9f7be0d6c1cbf19af
MD5 636117b62f35512e795c83a630c66bc0
BLAKE2b-256 f83bd1694ec08bb41e4d77638ad61bc94553fd43eb7a14f72c6f6c80b96c1f3a

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fc2394970e9d78c7f1b410dc3576679206f5c77f3ef0b39b945f330d1bae288
MD5 697cc7b30f7f4b8a7e0dd2921e18e55c
BLAKE2b-256 96f8c92e84ed661347dc3874d51773d14ffacddc5c79b1058b21e7f95360dbfe

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0874f7bcc86436a166edd5e307de1e681062097832c2d485f3a10caf849bd10b
MD5 2bfd228eddee3a4133cace6476e50d04
BLAKE2b-256 6d5318900d8498e15412a310d975d77ee60a8f814ac9357c561c14dda850d0cd

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e579c0604fe34ded944daedfeee31e5121f9fe4cddc9d6bfdfaf5200c10722d
MD5 2e63ad00162a672854856c9984b3daf7
BLAKE2b-256 7d2bec940f40a508725840543b248ee2c1a7e745d693956346fd314c28666b57

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 81ec67d99aabc67a369c3b63cf61e8c30ae6f3e9cd0b5a2e8b507487a55a04c2
MD5 19a941bf672d9bdfef664d8e5ea4e68f
BLAKE2b-256 d647a66683fab7f1ec149ccc69489bed3752a649e9db2fef9fd9dc7d1725fe61

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 503d28139db4752e06443f75a6d29803eea3ca6ea5f85b900af76245d0e056a2
MD5 f0f680f850ec5ed1e196fdd986139dd8
BLAKE2b-256 b49568b3fc7e68a96f38d5e92b19904447f6ab47187924b558eb228a59488f37

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 05e3018e2626256e167e75f7da9c5e1bbe4850ead90b8fe3940e7b362f9f950a
MD5 64ccc4824ab423a0e4a6233dd1e0037c
BLAKE2b-256 dd7143ded5d7a6095a42b73020e87ab880905b22ec25c170d746fb2fa608dc90

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed3d2fca00412b45743bd6dcc3a674f51ef66805272eb91dbf3cd0bc04fc61d0
MD5 00b78bcc3a52ab58f1062272feab5b65
BLAKE2b-256 be51d703b3d9f5d9a99a5fa7b678cb51332b48c54396c186f2bced7583a98598

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8e6038be0534b397d43ccb76ee2a4d53b0a346f2756d628463512c19f7264e5
MD5 6fad6cb7bd432f78a994764cdf9428a2
BLAKE2b-256 2500ba65dfad78bdf52c2f0b777cf0a1f4d91f36b50703e65d25f0a381c5cbe6

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a0fa85d41eef74cc94bb1f4d2ca75590ac55984056e25a705539bd54c25c06da
MD5 78b4fce3ba97d1a85a15c15e99afa6e5
BLAKE2b-256 16cad4e1b64df457f059fec46c28539465f6af08db96190e39f4757ca8f8cdc5

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ce1e099d3cd78c44d2f97b5d582da5fccc0cc71e6e8fd8c3a9eb2906ece448bb
MD5 deac0978c9367101f3b616e7c9a463b0
BLAKE2b-256 4955334b86542cb39c35aec199cd6223dbe3970bcc2011c83784c7aed916b5ea

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40ddc283fd0d7db48c6cd125262d6ba279268f92a67a6faec6c2dc8a927feafa
MD5 faf88aa194ba08ab98946f570a0ebce7
BLAKE2b-256 aea03f32f2bbe425c31b31d492c8c8daf935e52fe5224c5313f5a168bd26d38a

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2bf20cb856ec392e68b7fd1425bce737d898528d8cef1ed6cbb0dda7d49c89f9
MD5 4e9a0a96da7bfda6a744d608fd616523
BLAKE2b-256 e5faaabbd84d8f2ef9c9e9852affa70a8b2d31ec9add36af354a5c7bf6eed7aa

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6bb058c7e978cbc1b7875d4ad5e9e544f313c994796027a840e494b7912946f8
MD5 cf07912dce81ad797486a4aff55015cd
BLAKE2b-256 4a234c6fb9b041ef223cdc708f54e38f5aec78673515a3ef587c9ccd9d8067a1

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e759339b23a65f50f44b5ddb7a9d6223d40ca706949d47d47919a6fdd6fe6e71
MD5 dbb2c57656121dc7a45fb9bf7e0024d2
BLAKE2b-256 1e17e1d27803a8edf8a8469c4143d651f5fa005d1bbaf9c4e7dd2869bb207c54

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 678f971ca2eadc525b19ec160802aa2ab9eb69abc12684598cbd686ee264b28a
MD5 b2e5b2cbb683c4cd571552df3734942b
BLAKE2b-256 504ed110f54b6419e3264797080a856fd93e0fb95ce01ddbefc883684fb9ec68

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87ab09775e9047f8f977322008cbf016a8510217b3e9d2c9ae6ab0b70051f14c
MD5 6d12b39a7600fbf865596d6f954f2d4c
BLAKE2b-256 2b4744b052590952bb7cd110a2d446b322b8832e741b058c4a20410fcbe7a87d

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a70a9586aef90700c548d571b30610337b8e348e89f5cef5190e8d03e5524822
MD5 49259a1f4f6d3d873d03e58637b24879
BLAKE2b-256 e86bd898befa8ae8e4e79a0694fb5cd634116c2c0905fdafb60e0489ac58d58d

See more details on using hashes here.

File details

Details for the file astrometry-4.1.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.1.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ad0c44aa19234ee7c42a42236d83acb861469c65b0166bbad111b7942dc0b35
MD5 e003b75629bc7c0626cd0b7d1dfdaa70
BLAKE2b-256 3170bf71ca1d33b272ea399e4d78b34d534cfe000380f8dbb4f7bd3431ea2335

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page