Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

A forward model using SVR to estimate stellar parameters from spectra.

Project description

SLAM

Stellar LAbel Machine (SLAM) is a forward model to estimate stellar labels (e.g., Teff, logg and chemical abundances). It is based on Support Vector Regression (SVR) which is a non-parametric regression method.

For details of SLAM, see Zhang et al. (2019).

Author

Bo Zhang (bozhang@nao.cas.cn)

Home page

Install

  • for the latest stable version:
    • pip install astroslam
  • for the latest github version:
    • pip install git+git://github.com/hypergravity/astroslam

Requirements

  • numpy
  • scipy
  • matplotlib
  • astropy
  • scikit-learn
  • joblib
  • pandas
  • emcee

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for astroslam, version 1.2019.918.0
Filename, size File type Python version Upload date Hashes
Filename, size astroslam-1.2019.918.0-py3-none-any.whl (115.4 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size astroslam-1.2019.918.0.tar.gz (100.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page