A forward model using SVR to estimate stellar parameters from spectra.
Project description
SLAM
Stellar LAbel Machine (SLAM) is a forward model to estimate stellar parameters (e.g., Teff, logg, [Fe/H] and chemical abundances). It is based on Support Vector Regression (SVR), which in essential is a non-parametric regression method.
Author
Bo Zhang (bozhang@nao.cas.cn)
Home page
Install
- for the latest stable version:
pip install astroslam
- for the latest github version:
pip install git+git://github.com/hypergravity/astroslam
Requirements
- numpy
- scipy
- matplotlib
- astropy
- sklearn
- joblib
- pandas
- emcee
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
astroslam-1.2019.109.0.tar.gz
(100.4 kB
view hashes)
Built Distributions
astroslam-1.2019.109.0-py3.7.egg
(255.2 kB
view hashes)
Close
Hashes for astroslam-1.2019.109.0-py3.7.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dcc7c659afbc1e095c8ad981caf1397ef4a44ee503a75eb596ed652679c7891 |
|
MD5 | a3b4c7b6f4b6f11e4001b3c987f9d521 |
|
BLAKE2b-256 | 60135a85d2e1eeaa61c945585165b5b882ab8b4669c436c15c5166503c251186 |
Close
Hashes for astroslam-1.2019.109.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51e6edb1d9247c9ff6ddeaae23276437af97cb7a651a2441f95980d06dbe1ed5 |
|
MD5 | 597ded67b553c8adfe3366e36a7b4d6b |
|
BLAKE2b-256 | 60034360a0a864dfad2535cdb6fb25d58b9cf0a4af64db8063c9dd806a5c6978 |