A forward model using SVR to estimate stellar parameters from spectra.
Project description
SLAM
Stellar LAbel Machine (SLAM) is a forward model to estimate stellar parameters (e.g., Teff, logg, [Fe/H] and chemical abundances). It is based on Support Vector Regression (SVR), which in essential is a non-parametric regression method.
Author
Bo Zhang (bozhang@nao.cas.cn)
Home page
Install
- for the latest stable version:
pip install astroslam
- for the latest github version:
pip install git+git://github.com/hypergravity/astroslam
Requirements
- numpy
- scipy
- matplotlib
- astropy
- sklearn
- joblib
- pandas
- emcee
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
astroslam-1.2019.109.2.tar.gz
(100.5 kB
view hashes)
Built Distribution
Close
Hashes for astroslam-1.2019.109.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7627a25b62532f45796ddf1996043c530715e73e75dd7368fc8c102462d4bbd |
|
MD5 | e9da7fcf5363b411f2edb06b6cc8385a |
|
BLAKE2b-256 | 16510493ea82940b8ff01dc929bcadef9bf10e893dbe2f19dfa0454863bb7296 |