A forward model using SVR to estimate stellar parameters from spectra.
Project description
SLAM
Stellar LAbel Machine (SLAM) is a forward model to estimate stellar labels (e.g., Teff, logg and chemical abundances). It is based on Support Vector Regression (SVR) which is a non-parametric regression method.
For details of SLAM, see Deriving the stellar labels of LAMOST spectra with Stellar LAbel Machine (SLAM).
Related Projects
- Exploring the spectral information content in the LAMOST medium-resolution survey (MRS)
- Tracing Kinematic and Chemical Properties of Sagittarius Stream by K-Giants, M-Giants, and BHB stars
Author
Bo Zhang (bozhang@nao.cas.cn)
Home page
Install
- for the latest stable version:
pip install astroslam
- for the latest github version:
pip install git+git://github.com/hypergravity/astroslam
- for Zenodo version
Tutorial
A simple guide to SLAM can be accessed here with token gkvi
.
If you are interested in SLAM or have any related questions, do not hesitate to contact me.
Requirements
- numpy
- scipy
- matplotlib
- astropy
- scikit-learn
- joblib
- pandas
- emcee
How to cite
Paper:
@ARTICLE{2020ApJS..246....9Z,
author = {{Zhang}, Bo and {Liu}, Chao and {Deng}, Li-Cai},
title = "{Deriving the Stellar Labels of LAMOST Spectra with the Stellar LAbel Machine (SLAM)}",
journal = {\apjs},
keywords = {Astronomical methods, Astronomy data analysis, Bayesian statistics, Stellar abundances, Chemical abundances, Fundamental parameters of stars, Catalogs, Surveys, Astrophysics - Solar and Stellar Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Instrumentation and Methods for Astrophysics},
year = 2020,
month = jan,
volume = {246},
number = {1},
eid = {9},
pages = {9},
doi = {10.3847/1538-4365/ab55ef},
archivePrefix = {arXiv},
eprint = {1908.08677},
primaryClass = {astro-ph.SR},
adsurl = {https://ui.adsabs.harvard.edu/abs/2020ApJS..246....9Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
Code:
@misc{https://doi.org/10.5281/zenodo.3461504,
author = {Zhang, Bo},
title = {hypergravity/astroslam: Stellar LAbel Machine},
doi = {10.5281/zenodo.3461504},
url = {https://zenodo.org/record/3461504},
publisher = {Zenodo},
year = {2019}
}
For other formats, please go to https://search.datacite.org/works/10.5281/zenodo.3461504.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for astroslam-1.2019.1101.5-py3.7.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | f544bef934f7678c1685c5dec437a783f8511d76f91495c92eb2fa9236677c17 |
|
MD5 | bdd6670b3d8cbf9295b8ad7966d49ed2 |
|
BLAKE2b-256 | b2b003754922bb3de01cba13935144c18070a883c9a5b0c565fa9dc19e5aa051 |
Hashes for astroslam-1.2019.1101.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26b1e77fac59609126aeaaee527fd29ea25ad74205fa1d0b79a31c781309ef78 |
|
MD5 | c1e80f943bbb58120dde36e8ab0ac54f |
|
BLAKE2b-256 | 2369f51017573a1e4130d00d6ddbaf1b40d49ef345c0725b6d74e7ca1b95d42d |