Skip to main content

Fork of direct_redis with redis version bumped up to support asynchronous calls.

Project description

Direct-Redis (Async)

  • Serialize any python datatypes and executes redis commands using redis-py
  • When loading, it auutomatically converts serialized data into original data types

Getting Started

Install via pypi

pip install async-direct-redis

Instantiate

from direct_redis import AsyncDirectRedis
r = AsyncDirectRedis(host='localhost', port=6379)

All methods should be awaited

Supporting Data Types

  • Built-in
    • string
    • number(int, float)
    • dictionary
    • list
    • tuple
    • etc (all other python built-in types)
  • Module Classes
    • pandas
    • numpy

Supporting Redis Commands

Direct-Redis Supports

  • Basic Functions
    • KEYS
    • RANDOMKEY
    • TYPE
    • SET
    • GET
  • Hash Functions
    • HKEYS
    • HSET
    • HMSET
    • HGET
    • HMGET
    • HGETALL
    • HVALS
  • Set Functions
    • SADD
    • SREM
    • SMEMBERS
    • SPOP
    • SDIFF
    • SCARD (Default)
    • SRANDMEMBER
  • List Functions
    • LPUSH
    • RPUSH
    • LPUSHX
    • RPUSHX
    • LRANGE
    • LPOP
    • RPOP
    • LINDEX

Examples

String

  • Originally redis stores string into bytes.
>>> s = "This is a String. \n스트링입니다."
>>> print(s)
This is a String.
스트링입니다.   

>>> r.set('s', s)   

>>> r.get('s')   
'This is a String. \n스트링입니다.'    

>>> type(r.get('s'))
<class 'str'>

Numbers

>>> mapping = {
...     'a': 29,
...     'b': 0.5335113,
...     'c': np.float64(0.243623466363223),
... }   

>>> r.hmset('nums', mapping)   

>>> r.hmget('nums', *mapping.keys())   
[29, 0.5335113, 0.243623466363223]    

>>> list(mapping.values()) == r.hmget('nums', *mapping.keys())
True

Nested Dictionaries and Lists

>>> l = [1,2,3]
>>> d = {'a': 1, 'b': 2, 'c': 3}   

>>> r.hmset('list and dictionary', {'list': l, 'dict': d})   

>>> r.hgetall("list and dictionary")
{'list': [1, 2, 3], 'dict': {'a': 1, 'b': 2, 'c': 3}}

>>> type(r.hgetall("list and dictionary")['list'])
<class 'list'>   

>>> type(r.hgetall("list and dictionary")['dict'])
<class 'dict'>

Pandas DataFrame

>>> df =  pd.DataFrame([[1,2,3,'235', '@$$#@'], 
                       ['a', 'b', 'c', 'd', 'e']])
>>> print(df)
   0  1  2    3      4
0  1  2  3  235  @$$#@
1  a  b  c    d      e   

>>> r.set('df', df)   

>>> r.get('df')
   0  1  2    3      4
0  1  2  3  235  @$$#@
1  a  b  c    d      e   

>>> type(r.get('df'))
<class 'pandas.core.frame.DataFrame'>

Numpy Array

>>> arr = np.random.rand(10).reshape(5, 2)
>>> print(arr)
[[0.25873887 0.00937433]
 [0.0472811  0.94004351]
 [0.92743943 0.93898677]
 [0.87706341 0.85135288]
 [0.06390652 0.86362001]]   

>>> r.set('a', arr)   

>>> r.get('a')   
array([[0.25873887, 0.00937433],
       [0.0472811 , 0.94004351],
       [0.92743943, 0.93898677],
       [0.87706341, 0.85135288],
       [0.06390652, 0.86362001]])   

>>> type(r.get('a'))
<class 'numpy.ndarray'>

Author

direct-redis is developed and maintained by Yonghee Cheon (yonghee.cheon@gmail.com).
It can be found here: https://github.com/yonghee12/direct-redis

Special thanks to:

  • Andy McCurdy, the author of redis-py.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

async_direct_redis-0.3.1-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file async_direct_redis-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for async_direct_redis-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fcca2878e008d28a3c507504b05182190a9e0d57e6d27ca7782cb43bc5329602
MD5 472550bce7df675e629a7ce3b590e09e
BLAKE2b-256 b065d870d5aef15d9b588a625608b3b0df7f642484a67ed63490e151ac494289

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page