Skip to main content

Unofficial Async Python client library for the OpenAI API

Project description

async-openai

Unofficial Async Python client library for the OpenAI API based on Documented Specs

Latest Version: PyPI version

Official Client

Features

  • Asyncio based with Sync and Async Support with httpx

  • Supports all API endpoints

    • Completions: Docs

      • Supports Streaming
    • Chat: Docs

      • Supports Streaming

      • Supports Functions

    • Edits: Docs

    • Embeddings: Docs

    • Models: Docs

  • Strongly typed validation of requests and responses with Pydantic Models with transparent access to the raw response and object-based results.

  • Handles Retries automatically through backoff and custom retry logic.

    • Handles rate_limit errors and retries automatically. (when passing auto_retry = True)
  • Supports Multiple Clients and Auto-Rotation of Clients

  • Supports Azure API

  • Supports Local and Remote Cloud Object Storage File Handling Asyncronously through file-io

    • Supports S3: s3://bucket/path/to/file.txt

    • Supports GCS: gs://bucket/path/to/file.txt

    • Supports Minio: minio://bucket/path/to/file.txt

  • Supports limited cost tracking for Completions and Edits requests (when stream is not enabled)

  • Parallelization Safe with ThreadPools or any asyncio compatible event loop. Can handle 100s of requests per second. (If you don't run into rate limits)


Installation

# Install from stable
pip install async-openai

# Install from dev/latest
pip install git+https://github.com/GrowthEngineAI/async-openai.git

Quick Usage

import asyncio
from async_openai import OpenAI, settings, CompletionResponse

# Environment variables should pick up the defaults
# however, you can also set them explicitly. See below for more details.

# `api_key` - Your OpenAI API key.                  Env: [`OPENAI_API_KEY`]
# `url` - The URL of the OpenAI API.                Env: [`OPENAI_URL`]
# `api_type` - The OpenAI API type.                 Env: [`OPENAI_API_TYPE`]
# `api_version` - The OpenAI API version.           Env: [`OPENAI_API_VERSION`]
# `organization` - The OpenAI organization.         Env: [`OPENAI_ORGANIZATION`]
# `proxies` - A dictionary of proxies to be used.   Env: [`OPENAI_PROXIES`]
# `timeout` - The timeout in seconds to be used.    Env: [`OPENAI_TIMEOUT`]
# `max_retries` - The number of retries to be used. Env: [`OPENAI_MAX_RETRIES`]

OpenAI.configure(
    api_key = "sk-XXXX",
    organization = "org-XXXX",
    debug_enabled = False,
)

# Alternatively you can configure the settings through environment variables
# settings.configure(
#    api_key = "sk-XXXX",
#     organization = "org-XXXX",
# )


# [Sync] create a completion
# Results return a CompletionResult object
result: CompletionResponse = OpenAI.completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)

# print the completion text
# which are concatenated together from the result['choices'][n]['text']

print(result.text)

# print the number of choices returned
print(len(result))

# get the cost consumption for the request
print(result.consumption)

# [Async] create a completion
# All async methods are generally prefixed with `async_`

result: CompletionResponse = asyncio.run(
    OpenAI.completions.async_create(
        prompt = 'say this is a test',
        max_tokens = 4,
        stream = True
    )
)

Configuration and Environment Variables

The following environment variables can be used to configure the client.


OpenAI Configuration

url: The OpenAI API URL                                     | Env: [`OPENAI_API_URL`]
scheme: The OpenAI API Scheme                               | Env: [`OPENAI_API_SCHEME`]
host: The OpenAI API Host                                   | Env: [`OPENAI_API_HOST`]
port: The OpenAI API Port                                   | Env: [`OPENAI_API_PORT`]
api_base: The OpenAI API Base                               | Env: [`OPENAI_API_BASE`]
api_key: The OpenAI API Key                                 | Env: [`OPENAI_API_KEY`]
api_path: The OpenAI API Path                               | Env: [`OPENAI_API_PATH`]
api_type: The OpenAI API Type                               | Env: [`OPENAI_API_TYPE`]
api_version: The OpenAI API Version                         | Env: [`OPENAI_API_VERSION`]
api_key_path: The API Key Path                              | Env: [`OPENAI_API_KEY_PATH`]
organization: Organization                                  | Env: [`OPENAI_ORGANIZATION`]
proxies: The OpenAI Proxies                                 | Env: [`OPENAI_PROXIES`]
timeout: Timeout in Seconds                                 | Env: [`OPENAI_TIMEOUT`]
max_retries: The OpenAI Max Retries                         | Env: [`OPENAI_MAX_RETRIES`]
ignore_errors: Ignore Errors                                | Env: [`OPENAI_IGNORE_ERRORS`]
disable_retries: Disable Retries                            | Env: [`OPENAI_DISABLE_RETRIES`]
max_connections: Max Connections                            | Env: [`OPENAI_MAX_CONNECTIONS`]
max_keepalive_connections: Max Keepalive Connections        | Env: [`OPENAI_MAX_KEEPALIVE_CONNECTIONS`]
keepalive_expiry: Keepalive Expiry                          | Env: [`OPENAI_KEEPALIVE_EXPIRY`]
custom_headers: Custom Headers                              | Env: [`OPENAI_CUSTOM_HEADERS`]

Azure Configuration

azure_url: The OpenAI API URL                               | Env: [`AZURE_OPENAI_API_URL`]
azure_scheme: The OpenAI API Scheme                         | Env: [`AZURE_OPENAI_API_SCHEME`]
azure_host: The OpenAI API Host                             | Env: [`AZURE_OPENAI_API_HOST`]
azure_port: The OpenAI API Port                             | Env: [`AZURE_OPENAI_API_PORT`]
azure_api_key: The OpenAI API Key                           | Env: [`AZURE_OPENAI_API_KEY`]
azure_api_base: The OpenAI API Base                         | Env: [`AZURE_OPENAI_API_BASE`]
azure_api_path: The OpenAI API Path                         | Env: [`AZURE_OPENAI_API_PATH`]
azure_api_type: The OpenAI API Type                         | Env: [`AZURE_OPENAI_API_TYPE`]
azure_api_version: The OpenAI API Version                   | Env: [`AZURE_OPENAI_API_VERSION`]
azure_api_key_path: The API Key Path                        | Env: [`AZURE_OPENAI_API_KEY_PATH`]
azure_organization: Organization                            | Env: [`AZURE_OPENAI_ORGANIZATION`]
azure_proxies: The OpenAI Proxies                           | Env: [`AZURE_OPENAI_PROXIES`]
azure_timeout: Timeout in Seconds                           | Env: [`AZURE_OPENAI_TIMEOUT`]
azure_max_retries: The OpenAI Max Retries                   | Env: [`AZURE_OPENAI_MAX_RETRIES`]

Initialize Clients Manually, and working with multiple clients

from async_openai import OpenAI

# Configure your primary client (default)


OpenAI.configure(
    api_key = "sk-XXXX",
    organization = "org-XXXX",
    debug_enabled = False,

    # Azure Configuration
    azure_api_base = 'https://....openai.azure.com/',
    azure_api_version = '2023-07-01-preview',
    azure_api_key = '....',
)

# Returns the default client (openai)
oai = OpenAI.init_api_client()

# Configure your secondary client (azure) and use it directly
az = OpenAI.init_api_client('az', set_as_default = False, debug_enabled = True)
result = az.completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)


# Use the default client (openai)
result = OpenAI.completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)
# Or 
result = oai.completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)

# You can select the different clients by name or index
result = OpenAI['az'].completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)

# Use the default client (openai)
result = OpenAI['default'].completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)

# Will use the `default` client since it was initialized first
result = OpenAI[0].completions.create(
    prompt = 'say this is a test',
    max_tokens = 4,
    stream = True
)

Handling Errors, Retries, and Rotations

The below will show you how to rotate between multiple clients when you hit an error.

Important Auto-rotation is only supported with chat_create and async_chat_create methods. Otherwise, you should handle the rotation manually.

import asyncio
from async_openai import OpenAI, ChatResponse
from async_openai.utils import logger

OpenAI.configure(
    api_key = "sk-XXXX",
    organization = "org-XXXX",
    debug_enabled = False,

    # Azure Configuration
    azure_api_base = 'https://....openai.azure.com/',
    azure_api_version = '2023-07-01-preview',
    azure_api_key = '....',

    # This will allow you to auto rotate clients when you hit an error.
    # But only if you have multiple clients configured and are using `OpenAI.chat_create`
    enable_rotating_clients = True, 

    # This will prioritize Azure over OpenAI when using `OpenAI.chat_create`
    prioritize = "azure",
)

# Display the current client
OpenAI.get_current_client_info(verbose = True)

# Rotate to the next client
# OpenAI.rotate_client(verbose = True)

###
# [Sync] create a completion with auto-rotation and auto-retry
###

result: ChatResponse = OpenAI.chat_create(
    model = "gpt-3.5-turbo-16k",
    messages = [
        {"role": "user", "content": "Translate the following English text to French: “Multiple models, each with different capabilities and price points. Prices are per 1,000 tokens. You can think of tokens as pieces of words, where 1,000 tokens is about 750 words. This paragraph is 35 tokens”"}
    ],
    auto_retry = True,

)

logger.info(f'Result Chat Message: {result.messages}')
logger.info(f'Result Usage: {result.usage}')
logger.info(f'Result Consumption: {result.consumption}')

###
# [Async] create a completion with auto-rotation and auto-retry
###

result: ChatResponse = asyncio.run(
    OpenAI.async_chat_create(
        model = "gpt-3.5-turbo-16k",
        messages = [
            {"role": "user", "content": "Translate the following English text to French: “Multiple models, each with different capabilities and price points. Prices are per 1,000 tokens. You can think of tokens as pieces of words, where 1,000 tokens is about 750 words. This paragraph is 35 tokens”"}
        ],
        auto_retry = True,
    )
)

Function Calls

The latest version of the API allows for function calls to be made. This is currently only supported in Chat and requires api version: 2023-07-01-preview for azure.

Function calls support using pydantic models to auto-generate the schemas

import asyncio
from enum import Enum
from client_rotate import OpenAI
from async_openai.utils import logger
from pydantic import BaseModel, Field

class Unit(str, Enum):
    celsius = "celsius"
    fahrenheit = "fahrenheit"

class Weather(BaseModel):
    location: str = Field(..., description="The city and state, e.g. San Francisco, CA.")
    unit: Unit = Field(Unit.fahrenheit)

functions = [ 
  {
    "name": "get_current_weather",
    "description": "Get the current weather in a given location",
    "parameters": Weather,
  }
]

result: ChatResponse = OpenAI.chat_create(
    model = "gpt-3.5-turbo-16k",
    messages = [
        {"role": "user", "content": "What's the weather like in Boston today?"}
    ],
    functions = functions,
    auto_retry = True,
)

logger.info(f'Result Chat Message: {result.messages}')
logger.info(f'Result Chat Function: {result.function_results}')
logger.info(f'Result Usage: {result.usage}')
logger.info(f'Result Consumption: {result.consumption}')

"""
Result:

> Result Chat Message: [ChatMessage(content='', role='assistant', function_call=FunctionCall(name='get_current_weather', arguments={'location': 'Boston, MA'}), name=None)]
> Result Chat Function: [FunctionCall(name='get_current_weather', arguments={'location': 'Boston, MA'})]
> Result Usage: prompt_tokens=16 completion_tokens=19 total_tokens=35
> Result Consumption: 0.00012399999999999998
"""

Configure Azure Model Mapping

Your azure models may be named differently than the default mapping. By configuring the mapping, you can automatically map the models to the correct azure model (when using openai model names).

from async_openai import OpenAI

"""
Default Azure Model Mapping
{
    'gpt-3.5-turbo': 'gpt-35-turbo',
    'gpt-3.5-turbo-16k': 'gpt-35-turbo-16k',
    'gpt-3.5-turbo-instruct': 'gpt-35-turbo-instruct',
    'gpt-3.5-turbo-0301': 'gpt-35-turbo-0301',
    'gpt-3.5-turbo-0613': 'gpt-35-turbo-0613',
}
"""

AzureModelMapping = {
    'gpt-3.5-turbo': 'azure-gpt-35-turbo',
    'gpt-3.5-turbo-16k': 'azure-gpt-35-turbo-16k',
    'gpt-3.5-turbo-instruct': 'azure-gpt-35-turbo-instruct',
    'gpt-3.5-turbo-0301': 'azure-gpt-35-turbo-0301',
    'gpt-3.5-turbo-0613': 'azure-gpt-35-turbo-0613',
}

OpenAI.configure(
    api_key = "sk-XXXX",
    organization = "org-XXXX",
    debug_enabled = False,

    # Azure Configuration
    azure_api_base = 'https://....openai.azure.com/',
    azure_api_version = '2023-07-01-preview',
    azure_api_key = '....',
    azure_model_mapping = AzureModelMapping,
)

# This will now use the azure endpoint as the default client
OpenAI.init_api_client('az', set_as_default = True, debug_enabled = True)

# This will automatically map "gpt-3.5-turbo-16k" -> "azure-gpt-35-turbo-16k"
result: ChatResponse = OpenAI.chat.create(
    model = "gpt-3.5-turbo-16k",
    messages = [
        {"role": "user", "content": "Translate the following English text to French: “Multiple models, each with different capabilities and price points. Prices are per 1,000 tokens. You can think of tokens as pieces of words, where 1,000 tokens is about 750 words. This paragraph is 35 tokens”"}
    ],
    auto_retry = True,
)

Dependencies

The aim of this library is to be as lightweight as possible. It is built on top of the following libraries:

  • aiohttpx: Unified Async / Sync HTTP Client that wraps around httpx

    • httpx: Async / Sync HTTP Requests

    • lazyops: Provides numerous utility functions for working with Async / Sync code and data structures

  • pydantic: Type Support

  • file-io: Async Cloud-based File Storage I/O

  • backoff: Retries with Exponential Backoff

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

async_openai-0.0.52.tar.gz (90.5 kB view details)

Uploaded Source

Built Distribution

async_openai-0.0.52-py3-none-any.whl (108.1 kB view details)

Uploaded Python 3

File details

Details for the file async_openai-0.0.52.tar.gz.

File metadata

  • Download URL: async_openai-0.0.52.tar.gz
  • Upload date:
  • Size: 90.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for async_openai-0.0.52.tar.gz
Algorithm Hash digest
SHA256 1660d83a8022bce24e199d82fa727ddbf64f7e85353267f71c5a1b889f00af86
MD5 7799e5c28360094a118bb7f00276b300
BLAKE2b-256 9122f5903a4b46d078883591a26a4882ed56eb2b05c66de4f27e10b7c76ec3f8

See more details on using hashes here.

File details

Details for the file async_openai-0.0.52-py3-none-any.whl.

File metadata

File hashes

Hashes for async_openai-0.0.52-py3-none-any.whl
Algorithm Hash digest
SHA256 239b735c8d9c8d289171a539f16a2d9d645290d7c436c15b6e11aa57f0715691
MD5 b8f17452a86ad4f0d66ca1916a3c330d
BLAKE2b-256 c80ba0b27c2da6c9a48798e771ee8e462384d35a5f3516e58bb172d1e27df6c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page