Skip to main content

Async behavior tree

Project description

Async Behaviour Tree for Python

Unix Build Status Coverage Status Codacy Badge Scrutinizer Code Quality PyPI Version PyPI License

Versions following Semantic Versioning

See documentation.

Overview

What's a behavior tree ?

Unlike a Finite State Machine, a Behaviour Tree is a tree of hierarchical nodes that controls the flow of decision and the execution of "tasks" or, as we will call them further, "Actions". -- behaviortree

If your new (or not) about behavior tree, you could spend some time on this few links:

Few implementation libraries:

  • task_behavior_engine A behavior tree based task engine written in Python
  • pi_trees a Python/ROS library for implementing Behavior Trees
  • pr_behavior_tree A simple python behavior tree library based on coroutines
  • btsk Behavior Tree Starter Kit
  • behave A behavior tree implementation in Python

Why another library so ?

SIMPLICITY

When you study behavior tree implementation, reactive node, dynamic change, runtime execution, etc ... At a moment you're build more or less something that mimic an evaluator 'eval/apply' or a compilator, with a complex hierachical set of class.

All complexity came with internal state management, using tree of blackboard to avoid global variable, multithreading issue, maybe few callback etc ...

This break the simplicity and beauty of your initial design.

What I find usefull with behavior tree:

  • clarity of expression
  • node tree representation
  • possibility to reuse behavior
  • add external measure to dynamicaly change a behavior, a first step on observable pattern...

As I've used OOP for years (very long time), I will try to avoid class tree and prefer using the power of functionnal programming to obtain what I want: add metadata on a sematic construction, deal with closure, use function in parameters or in return value...

And a last reason, more personal, it that i would explore python expressivity.

SO HOW ?

In this module, I purpose you to use the concept of coroutines, and their mecanisms to manage the execution flow. By this way:

  • we reuse simple language idiom to manage state, parameter, etc
  • no design constraint on action implementation
  • most of language build block could be reused

You could build expression like this:

async def a_func():
    """A great function"""
    return "a"

async def b_decorator(child_value, other=""):
    """A great decorator..."""
    return f"b{child_value}{other}"

assert run(decorate(a_func, b_decorator)) == "ba"

This expression apply b_decorator on function a_func. Note that decorate(a_func, b_decorator) is not an async function, only action, or condition are async function.

Few guidelines of this implementation:

  • In order to mimic all NodeStatus (success, failure, running), I replace this by truthy/falsy meaning of evaluation value. A special dedicated exception decorate standard exception in order to give them a Falsy meaning (ControlFlowException). By default, exception are raised like happen usually until you catch them.
  • Blackboard pattern, act as a manager of context variable for behavior tree. With python 3, please... simply use contextvars !
  • In order to be able to build a sematic tree, I've introduce a metadata tuple added on function implementation.

The rest is just implementation details..

A little note:

You should not use this until you're ready to think about what you're doing :)

Note about 'async' framework

As we use async function as underlaying mechanism to manage the execution flow, the standard library asyncio is pretty fine. But, (always a but somewhere isn't it...), you should read this [amazing blog post}(https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/) by Nathaniel J. Smith. And next study curio framework in deep.

As curio say:

Don't Use Curio if You're Allergic to Curio

Personaly, after few time of testing and reading curio code, I'm pretty addict.

Installation

Install this library directly into an activated virtual environment:

$ pip install async-btree

or add it to your Poetry project:

$ poetry add async-btree

Usage

After installation, the package can imported:

$ python
>>> import async_btree
>>> async_btree.__version__

See API Reference documentation.

With this framework, you didn't find any configuration file, no Xml, no json, no yaml.

The main reason (oriented and personal point of view) is that you did not need to introduce an extra level of abtraction to declare a composition of functions. I think it's true for most of main use case (except using an editor to wrote behaviour tree for example).

So "If you wrote your function with python, wrote composition in python"... (remember that you did not need XML to do SQL, just write good sql...)

So, the goal is to:

  • define your business function wich implements actions or conditions, with all test case that you wish/need
  • compose them using those provided by this framework like sequence, selector, ...
  • use them as it is or create a well define python module to reuse them

Wanna style have an abtract tree of our behaviour tree ?

Functions from async-btree build an abstract tree for you. If you lookup in code, you should see an annotation "node_metadata" on internal implementation. This decorator add basic information like function name, parameters, and children relation ship.

This abstract tree can be retreived and stringified with analyze and stringify_analyze. Here the profile:

  def analyze(target: CallableFunction) -> Node: # here we have our "abtract tree code"
    ...

For example:

# your behaviour tree, or a sub tree:
my_func = alias(child=repeat_until(child=action(hello), condition=success_until_zero), name="btree_1")

# retrieve meta information and build a Node tree
abstract_tree_tree_1 = analyze(my_func) 

# output the tree:
print(stringify_analyze(abstract_tree_tree_1))

This should print:

 --> btree_1:
     --(child)--> repeat_until:
         --(condition)--> success_until_zero:
         --(child)--> action:
                      target: hello

Note about action and condition method:

  • you could use sync or async function
  • you could specify a return value with SUCCESS or FAILURE
  • function with no return value will be evaluated as FAILURE until you decorate them with a always_successor always_failure

See this example/tutorial_1.py for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

async_btree-1.1.1.tar.gz (17.5 kB view details)

Uploaded Source

Built Distribution

async_btree-1.1.1-py3-none-any.whl (15.2 kB view details)

Uploaded Python 3

File details

Details for the file async_btree-1.1.1.tar.gz.

File metadata

  • Download URL: async_btree-1.1.1.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Darwin/19.6.0

File hashes

Hashes for async_btree-1.1.1.tar.gz
Algorithm Hash digest
SHA256 f737ba93b7c9614cd4d9ef7300cdc3eb36dded7734950e9f913e5f6a9d4552be
MD5 a8660a7ff52a16c5eb09d81d28f181ec
BLAKE2b-256 8a08680f2a102b77e974f2948c518dfe50d9af6194b7853897e0ad24ae48be14

See more details on using hashes here.

File details

Details for the file async_btree-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: async_btree-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 15.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Darwin/19.6.0

File hashes

Hashes for async_btree-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 63fcf41c7178176ebf98892ad75d1f96c9d299be993adcf341a364cc2574b022
MD5 920a5bea11fb18e1d0262419e20cde04
BLAKE2b-256 d28fc6f8cb83e5fb8a9a0b21ee603f4b149ace59633950d4ae8e368f3ed1ef2f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page