Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: aioredis (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

This version

2.2.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (721.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (679.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2086f1eae2a15dfc1dd771e89562831b7192c23d135332e4e62de71bcbf44791
MD5 c18d8290602d75b64abe24dd766b5d27
BLAKE2b-256 7da388e4f4935a2e8132852bae61d3e1c56a9ff92f59cbc859fb607458605fa9

See more details on using hashes here.

File details

Details for the file asyncdb-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3608490f03d2e0f6f7be769619ca39ac4e76e4d8dac83dd4b90a64519826fc36
MD5 cae5a6838f3ab880518763c51cb800a8
BLAKE2b-256 4e43df2a3effd4e7f48d5c13cddbcb8088b96ae5178189a692696d935c2608af

See more details on using hashes here.

File details

Details for the file asyncdb-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd72eb3876b1119af16bd19cc6cfd5a227fc322e0872dac1b0e4a51e981b0d95
MD5 5994d71a77381a756c2ac51d54ad5c3c
BLAKE2b-256 dc0b0350ac2b9de2afb4e8f44e356e3266e09706be1cce7ff350d47ee0844130

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page