Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: aioredis (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (701.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (657.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (664.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40b3574abda1199eebe45a844ff8a80130cbee8a7107d2e4d5562b207541be6e
MD5 78d8397b965578d1a8f0371051a6e221
BLAKE2b-256 88de717fc5d0307dbdae14bf0502dfd6962bd1a1f347096db29832efd0503d1e

See more details on using hashes here.

File details

Details for the file asyncdb-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6ec896bf2acb97552cbb2c79fdc4976ecc2be1362fd35c391e6a0e8ca0aa7cb
MD5 b5df0a2574c02ad12828a26ab7236ef1
BLAKE2b-256 6678e274f4be8a83661787c34177945cc8f98c1048933aaa9c27b28d05d1d220

See more details on using hashes here.

File details

Details for the file asyncdb-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd8efd69fd8215cbbf9ecd4524af5e2f9e080c6f516859c5883964591cdc2af1
MD5 4fa7f9a318fbaa68e3363980ab90c610
BLAKE2b-256 1060a914d753341f16fc31bcaed699cef9819c2f79b14749ef1ba0d1992b62e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page