Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: aioredis (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.5.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (707.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.5.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (664.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.5.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (671.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.5.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.5.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7bd03cbf01ba44938e5be7264549aa7d80a381e09adafc0abce6101bd644c5fb
MD5 81fb5fdb0eaf5174b5055696d75cd2fe
BLAKE2b-256 39a2f1c566b096a9d19dc7b6e395c5f73c88af69aa3aac701625a51d1873a98a

See more details on using hashes here.

File details

Details for the file asyncdb-2.5.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.5.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6913adf48b909d15156984d0a22fb3d38538afdedec44127e5d13e9e6495c59a
MD5 99b1fef3c28e905a4299a4e9915152f1
BLAKE2b-256 f8ccbb6a25446b22c2a8a30474956e892ba9c01dc8b348a2da8a1e8acb15f1ae

See more details on using hashes here.

File details

Details for the file asyncdb-2.5.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.5.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7cf1cab0ce8a348ad4f23b5bf2cd41cac50d312cc81ac83d2194d3d4ca49218
MD5 d277a51deede41e0d5a41595eba695fb
BLAKE2b-256 d4dede2e250fd66086361905c41b65dd649a3767b9b6d82424f5ef20e554cc01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page