Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: aioredis (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.6.16-pp310-pypy310_pp73-win_amd64.whl (214.3 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.16-pp39-pypy39_pp73-win_amd64.whl (214.4 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.16-cp312-cp312-win_amd64.whl (221.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.6.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (903.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.16-cp311-cp311-win_amd64.whl (223.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.6.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (828.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.16-cp310-cp310-win_amd64.whl (222.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.6.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (768.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.16-cp39-cp39-win_amd64.whl (223.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.6.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.6.16-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 44a3f92e3c6e414a00e5186a3923a8b4b0fff59296e5dc2dee1344343f897e5a
MD5 7e5f088641aee5c8f59da4ee391665f9
BLAKE2b-256 d7634d0feebf2a82c54515052ab7e9f8ddbd9a1c5c9501a68512f7102218e6d7

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3711e06f00b56c090c26ab63e0e1da167510d7b667a3a81542ea7c6ab0eecef3
MD5 3475f0ca719afa2c9a5218f14d2339d9
BLAKE2b-256 308e0f7ff9c8d3951f7bc37edc20acbedeec8a92963ebb60fb33147ac0fc486a

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.16-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 221.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 145d7beb7a21b9d4361b9b762765885a37a5fe95298207273d42a659a5a611b3
MD5 9ba3940adb13e7bc9413e4a98bd725de
BLAKE2b-256 7cf26d153303c03b3dd4bc1b6c934a1a6393080959c29379f586122a8fe06451

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8ee4b027bde3956195cc0949a922d24389287ccb16858833aad40f259ba1432
MD5 b914e7c8631d1f0d0bafb1c2ea9b44e7
BLAKE2b-256 2f660a0ddd7b96527693466afd07bfaa1116f53eed6a97e1c5b4080bf461fc19

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 223.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 84bdfe302c54477ebb2a743bc12203eaef4b97f1063aa221876ebc25eb8b82a8
MD5 714ab5ec441d55e0e58600bf56056980
BLAKE2b-256 3b693acf70504cd38ba04af13cb6156fa928871ce90d949d589af75182b471e6

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23b6546f98da6ec3a8a0fc58b0e8cd860d562177d1d4ed9982b6286ba5163f95
MD5 488593513841fb5476fad2da82c57425
BLAKE2b-256 5da269f4f8b7f21be051083435a5fa5cdf0724954722433d5823060c882fd488

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 222.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 25aae8fc16dfb0e235693d93317cf95121262d9ec63a1ac77a009271dff803ee
MD5 b16a6b512e37b0dd21d003078b482c37
BLAKE2b-256 27fb3992085c2c836e1317ed3861869f43eda6f869b2b5c42b76acfac72678fe

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b22f210aa58c03cd861174ce60c06d19e2a62df411e8f240e483bacc555962a9
MD5 1098de800936c79b76b22592c5e02c42
BLAKE2b-256 eb7d9c4f763c9569b10ef4ef09ff0df433afd5926507d01deaf4172fc9d1c3de

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 223.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aae307ea66e1b7e991598f90444c59adff661ee5be7feb5685f5cf9b00c1d509
MD5 677443e3672f7ed4aab46533452bd0b1
BLAKE2b-256 18bcc78831fc7e9a5305e6dd43042d9e34ae0ea255a8e4a0469704a71e87a383

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0991221741e3735295639d5f7a6483074cc35dfdbd80a4ea832908f6dc0d6bb5
MD5 6a01ea85b9bd80ebc06245fdb5cd250b
BLAKE2b-256 360a272ce17e946edd5ea305efddc984fe33cacfd6b23bab84053c5cd3704d12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page