Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: aioredis (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.6.17-pp310-pypy310_pp73-win_amd64.whl (214.3 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.17-pp39-pypy39_pp73-win_amd64.whl (214.4 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.17-cp312-cp312-win_amd64.whl (221.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.6.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (903.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.17-cp311-cp311-win_amd64.whl (223.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.6.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (828.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.17-cp310-cp310-win_amd64.whl (222.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.6.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (768.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.17-cp39-cp39-win_amd64.whl (223.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.6.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.6.17-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ad7600accc381f90343feaad6b539ab277f6374851d8d2ae066e6cb06c0a943c
MD5 fba042d5e5e23f8cfdb97106650ac0de
BLAKE2b-256 2c4118c2a6433e8422ec3ab5beea92c23f6354adfba50a52f1f56e25901e512d

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ddc7167a02bd72dbb1526e1c78be4d4ca8df2952c5b9746b9411c22a37fa7b0b
MD5 5e93be51953dbef1785228475904ca5b
BLAKE2b-256 6cbd847c7e1ae04ba9f7533d011c3b12b21710e92c2708a699ee245abbd1814e

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.17-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 221.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.17-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bc0d6c87a468b272e08bcd981be18068b00404f476cec3ea68774aa8a3fc002b
MD5 981753f7a7fd5e039bdfeca4722733a6
BLAKE2b-256 e4ea8311b9bd9ea43dc26343c62acd66888f8b0361a14357785e58a161a74da0

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e09f62a302ff685eafdc96b3ab876f64a0dd6946881b6e184c3b8b4e48fd7348
MD5 eb341c496793bc47e3eab6a3dacd10bd
BLAKE2b-256 789a141feb63e64f4ee4a9f7141d464a6c0f3bf3ac5e5fed139404650a2ce283

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.17-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 223.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.17-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 07bfceaa4a91fa9907ac64a314269b5ed3d1b1f8f1bc08f02cb64899df1671de
MD5 e15a278f0d44dfe719632702dce4cb08
BLAKE2b-256 e195c0a488cd332f5760fbcf931fdb316f561f2ab080a99806a8510593cdfdde

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac389fccc8d6cf73201db7cfe6f79b22e02b7e34f2e3b241d5ac85882f03485
MD5 400a87a1498e97f507f515112c0c3f5d
BLAKE2b-256 3812a8d49a0ab3206ab73d6d9d9ebcd9015b4c5b653edc9bed3ee45edf60514f

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.17-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 222.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1058dbeafcb9646e400e317de814109e2921ead9de41105d83e93865c53c6b7f
MD5 8b5857d93e7810950f6970b39d45a1c2
BLAKE2b-256 20dfae921ca6c3390e49b1106bc74bb6e2b2f3869d7a602f4e1434943ffef7b4

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8678ddf87fa1361c1daff3f9d67104ec0c85b31a22ea183f58755581987969a8
MD5 a15702a03f0c159b50fc46960497ad2c
BLAKE2b-256 24a4295595d045c3c084956038495a71147feab54d817c3c8566593aa6d7f4ca

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.17-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 223.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 042d36975f4ac6e8a865ee0f8f8e2757639ab76ea490b9059f08e18b3b27348b
MD5 9a1723755e537ff7e66d678af993fe1d
BLAKE2b-256 29e93c3b324af11105b5562fa06af6d95687bf0e4b670ca870189402e93fff1a

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17989bedc97af881abf408cd9ca3d8b257f6669c18103affdcc3e19bb6cede2a
MD5 48ace9425af4a60fb1da6eafcd103f5e
BLAKE2b-256 4d9187226ad8378a7d62c6ee9f65360e88be426c4a92cf243451b9bbaaa0514d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page