Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.8+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: redis-py (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.6.20-pp310-pypy310_pp73-win_amd64.whl (214.2 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.20-pp39-pypy39_pp73-win_amd64.whl (214.3 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.6.20-cp312-cp312-win_amd64.whl (221.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.6.20-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (903.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.20-cp311-cp311-win_amd64.whl (223.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.6.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (828.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.20-cp310-cp310-win_amd64.whl (222.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.6.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (768.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.6.20-cp39-cp39-win_amd64.whl (223.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.6.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.6.20-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 80f617bf91e27620c2d0f975ed067b562f4b1558848b315fe17fb4a18d3fd88b
MD5 5373df3546dfc9821b790c7d1c19312c
BLAKE2b-256 c6e283607d24f2c86854a52438c069fe1866acd7918c5bcb80c9148571ff34e2

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 638d9eb4ce211e12a045aa4d3adc9060e1d302e10a97ba09b6a52e94f82f23f0
MD5 ac93d61f744c01018d8ca1ac58e1ea12
BLAKE2b-256 1ac83a76a10a6e02a67ce77beee787fd2bb8d6931660c011eb969eb499ded1b5

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.20-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 221.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.20-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 88d8612e4557ab713d192b37713ff02790a347471b6b42a62230784e0b4d12c4
MD5 0706c0a46f9eb7ac14a420a08321d71d
BLAKE2b-256 1e41e76243781f7be78d7b1f27284640ada41dac770f29d3db65ae695f42877f

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcb19c132ff969a2bdb5188c9a4d5b68f66dd0a776ff503a2fdfdef128918072
MD5 c344d6484d5f4577fc52a5651a8c75d3
BLAKE2b-256 81116e9d9f811ed45ee1e1f0739b90d56e7dcb67cba929f2dad7757fa4db091f

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.20-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 223.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.20-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6f3d64b0b8ded971b96a4b5e6edf07599468afde451e5d66d1cc792b2010c112
MD5 00f33a855c13b855eb5213248e7ad2fe
BLAKE2b-256 957aad11f666a31088ec2ded5bf8429054aa529eb1daea45cd611d666c4a8fee

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe94d44257b5026b2fd430b9dbf61845dab135ed4e8b40f47dbd4efaee0600f3
MD5 d0a9ede27fef3a2329ce42dfeb59cc8a
BLAKE2b-256 74f62c6e7e3a031dd6eff49a55d3550b288a2c419cb127d9262c21c466015ae6

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.20-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 222.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.20-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 32fce36ea97b20daf8e7ea30e3d82603909cd9c1424c112623ac9f3edab8d992
MD5 ab7b181263b556c527987ae9913f1183
BLAKE2b-256 e960b71fe8af4c7d31d0698c5edc0dc72233626e45e3d94cf4de26a3aa00f67d

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cfd4e78205e11dc57c08e80c3c019c73bc700bda4fdcf4da2668c38692d5f11
MD5 e62b90f279bef2d8f91f7e386bfc209f
BLAKE2b-256 8dc44e65ecff2604e5118adb172ced11068a21936e1f42d11ad5d1c96dfeaaaa

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.6.20-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 223.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for asyncdb-2.6.20-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 61ad6789a83f8eb7ad16c994bccd097ba38253ec834cfffb84472999ed66bbc4
MD5 45f407738f22ebe78bb94ea277800ebd
BLAKE2b-256 a5f17d83b546ea1743d5e2d7bf91f67e2a056a6330ebc70120047f722aa89a0e

See more details on using hashes here.

File details

Details for the file asyncdb-2.6.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.6.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e14982f8f3e94657b74518324a755b379eb3933fc80b9b1472b4bf8f7c25a68
MD5 000e08b660057b84c60679fbee28ff8d
BLAKE2b-256 bf25d0f1a4a048f4c227f5474b7e4b43d989aa3c6321fd380a935032403b9768

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page