Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.9+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: redis-py (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.7.12-pp310-pypy310_pp73-win_amd64.whl (221.0 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.12-pp39-pypy39_pp73-win_amd64.whl (221.0 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.12-cp312-cp312-win_amd64.whl (226.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.7.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (905.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.12-cp311-cp311-win_amd64.whl (229.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.7.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (834.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.12-cp310-cp310-win_amd64.whl (229.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.7.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.12-cp39-cp39-win_amd64.whl (229.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.7.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (777.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.7.12-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a649dd06f74633575e07173f51eff5c0316531a87cd4ee24b10e35ce2b268d1b
MD5 527abbf3069ff61f16145f124ba81bba
BLAKE2b-256 010694e526f61f1b340839f4215cdc0feb77b83e48ce7727103b018249ac0ff9

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6093113697cb9148594cd42049a956e2dabc01f7232e08899b5b5d834b19fff7
MD5 57225ef4613b561c13b93796e27828d3
BLAKE2b-256 b129469f401ce73305f2d2e842e4f69b1ea9c6a747059bacae5d344b11a18816

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.12-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 226.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for asyncdb-2.7.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b354946528f2d972f81ca1eb14b4caaa503f011307a3166c758f265e665e460d
MD5 fc0ee4a37bad4cd89d3b3eac25a8c576
BLAKE2b-256 969eef8edebb7a94e0d303d641961fb03d4783e1ef86929e07a8a770808dddf5

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7facb566b095068972101d99553e15435fdf4fbb3338696e797bcd25f75194d1
MD5 5be25409e35418827ea4a9ec041ebc04
BLAKE2b-256 fbebab12ee3835ddf05588053872c6ffd558446f409c8645b4cbc6a8e3c41502

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.12-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 229.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for asyncdb-2.7.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cf503b642d29d1a8519f77636d235e49196c2aef53f749025d752e1c1a9808c3
MD5 b4dcfbf5442aea13481764562b423116
BLAKE2b-256 e5f7e3119fbefc6afc64e9186539791a414b4f6294056dbdd77dcaa35cbedbdf

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ffb0649c9387a957d0395d1f7a681b4632ad0a2097d9e73d238c75712b3a074
MD5 f30a626b60a479fc52515808789b41d8
BLAKE2b-256 5f9707231887de5510e950e53b8fcbc9d88ce47b5e0b0fbdabb2f359090800f1

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.12-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 229.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for asyncdb-2.7.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2f7480a15ea475a7b8558ed4972d296609b795efa76071c46eecb1ae0e9579c9
MD5 763b73cf99a186f2a9c587ddf95da420
BLAKE2b-256 f24cdf1d66cf6e5da723daa1a840c6938eda2b1431a106523eadb51f4d2f52ca

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f977660d4aa971e5d36519edf569b2e5ce79fbb3e5d2477d0e130e1acb3c1da6
MD5 7b38b53064ef2524d0d17b3d13b5d625
BLAKE2b-256 64a12ab5d6e8828e3282fdf268a47785210dd3d33921cf05b2014c19862000f1

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 229.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for asyncdb-2.7.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df5c61c269be403d81624789ef01f66bac852829494883dbf5c8deaf9832c3df
MD5 009c2f968c59932b03d988f99e7de602
BLAKE2b-256 7d858f3612ef6d172131e6aa8305bbd4aff036e22192e3659b5c83e0e331e2a1

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14a9b028d0ef73234d4d5c9c02cb74d2457a80a88ac400ad701d8ab5007512ae
MD5 e98b8ed5d7d1f244acb6871f78e4e851
BLAKE2b-256 80b8844fc456c6c34b0146ad8f9e8d476ede37edb60f2ac2fd1a4ef2dd3757e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page