Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.9+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: redis-py (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.7.2-pp310-pypy310_pp73-win_amd64.whl (216.3 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.2-pp39-pypy39_pp73-win_amd64.whl (216.3 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.2-cp312-cp312-win_amd64.whl (223.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (902.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.2-cp311-cp311-win_amd64.whl (225.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (830.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.2-cp310-cp310-win_amd64.whl (224.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (770.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.2-cp39-cp39-win_amd64.whl (225.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.7.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 951b65bf81ff693a4a736a785823d12b8ea6e98e68d6a245f374d2478bad50dd
MD5 121bcda7fd5bf76899a1453b37befa4e
BLAKE2b-256 4aaa622809a6c4b1ce0f76dd2a1d1f9515af9efbe8c641e0d25eee7ca3dc7c4a

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2749a18008b761195bd996439c9f004e2c7f1a039ce72d2dfbc802942b215a26
MD5 586f7072fcc799ecec0bfa9a39bbe069
BLAKE2b-256 480d43c4ffcf25e663decfbcc08b2000a2d6e8c097ae460772487223c4068f0d

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 223.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 18841928820f0503edca5178dccddda7ce136b5755adcf200e5f27a89f43cc01
MD5 03df63df7b122f41558c3da7d17f1366
BLAKE2b-256 2f026df95bccf6c1f48bb5ddd897f2078a46fdff2bf35c54d04320aa62d43b18

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8a5c493bdbaebe4408d7a07dd469a5504eb0c8770f07c33e9f92bec2e2c71cb
MD5 affd2885fc2c64500667b872a1504f04
BLAKE2b-256 ba9ff0d98c471025d89b4cb15fc614f910bde1c4495078b9dbfcda3c44f5d47b

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 225.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 de5309f534670d95f44935ddc95e3ca2d966bebb0de02de1941b842fd0a7f3ba
MD5 ac5fec407918a8bce08da5dbfeb0fb02
BLAKE2b-256 3b0b02436dd6d2af969b6862abc35c3126538ecfe745bc2e77f5e992fc810250

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecde6e3a89aa6684836b5cdf0c6a322fcdd0b2b894a8a320d23273e4fbe18422
MD5 1a20534fbc7428d0d3cf5fbb554d0ac6
BLAKE2b-256 5317bc90bdc39502bfe1ab1267397df731df5c39f8900cce8ee84f38fd4e34f9

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 224.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1dc9acc06b3a01e907abc0932491a2750d26efe9b1c42a83807e2c0f07c23cfd
MD5 409f5afdb0832700005995e8dde6231c
BLAKE2b-256 8086a3ac2cf18c44ecd70ff40e0b28ffea6bc7cc559082b10836653a31f364a9

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3045c36d87b8606045820d1c98b23c57e43b0cb61df5e44e18fa12a94149b4e
MD5 e5bbdf6ae2f8821648b8289cceb8f005
BLAKE2b-256 ecb583039633ca9de44af155f289f70b967f49a73648b1f02d66e1bef5de263c

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 225.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4fbf9d9e3f368b2bfc75e24aeaa539aafa1d32967a8f42ed061ef4bb46ddaba3
MD5 8de161feb49a8916b4290a584d0bb958
BLAKE2b-256 362133bb00fdbf1d5e246aa44be585db6074f9552e8b643ce2001cb4fd97802d

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3767bb0d23f35a8405f3e5c587a05ed2a6771c147994e842c07a1c15c2f883c7
MD5 e3e845b6c0e0e45267583f16d2f96526
BLAKE2b-256 ccab2438974382852c53c721c0b0761ae95eb8d2d36e6b5563f746bd08c930c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page