Skip to main content

Library for Asynchronous data source connections Collection of asyncio drivers.

Project description

AsyncDB

AsyncDB is a collection of different Database Drivers using asyncio-based connections, binary-connectors (as asyncpg) but providing an abstraction layer to easily connect to different data sources, a high-level abstraction layer for various non-blocking database connectors, on other blocking connectors (like MS SQL Server) we are using ThreadPoolExecutors to run in a non-blocking manner.

Why AsyncDB?

The finality of AsyncDB is to provide us a subset of drivers (connectors) for accessing different databases and data sources for data interaction. The main goal of AsyncDB is using asyncio-based technologies.

Getting Started

Requirements

Python 3.9+

Installation

$ pip install asyncdb
---> 100%
Successfully installed asyncdb

Can also install only drivers required like:

$ pip install asyncdb[pg] # this install only asyncpg

Or install all supported drivers as:

$ pip install asyncdb[all]

Requirements

Currently AsyncDB supports the following databases:

  • PostgreSQL (supporting two different connectors: asyncpg or aiopg)
  • SQLite (requires aiosqlite)
  • mySQL/MariaDB (requires aiomysql and mysqlclient)
  • ODBC (using aioodbc)
  • JDBC(using JayDeBeApi and JPype)
  • RethinkDB (requires rethinkdb)
  • Redis (requires aioredis)
  • Memcache (requires aiomcache)
  • MS SQL Server (non-asyncio using freeTDS and pymssql)
  • Apache Cassandra (requires official cassandra driver)
  • InfluxDB (using influxdb)
  • CouchBase (using aiocouch)
  • MongoDB (using motor)
  • SQLAlchemy (requires sqlalchemy async (+3.14))

Quick Tutorial

from asyncdb import AsyncDB

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')

# Or you can also passing a dictionary with parameters like:
params = {
    "user": "user",
    "password": "password",
    "host": "localhost",
    "port": "5432",
    "database": "database",
    "DEBUG": True,
}
db = AsyncDB('pg', params=params)

async with await db.connection() as conn:
    result, error = await conn.query('SELECT * FROM test')

And that's it!, we are using the same methods on all drivers, maintaining a consistent interface between all of them, facilitating the re-use of the same code for different databases.

Every Driver has a simple name to call it:

  • pg: AsyncPG (PostgreSQL)
  • postgres: aiopg (PostgreSQL)
  • mysql: aiomysql (mySQL)
  • influx: influxdb (InfluxDB)
  • redis: redis-py (Redis)
  • mcache: aiomcache (Memcache)
  • odbc: aiodbc (ODBC)

Future work:

  • Prometheus

Output Support

With Output Support results can be returned into a wide-range of variants:

from datamodel import BaseModel

class Point(BaseModel):
    col1: list
    col2: list
    col3: list

db = AsyncDB('pg', dsn='postgres://user:password@localhost:5432/database')
async with await d.connection() as conn:
    # changing output format to Pandas:
    conn.output_format('pandas')  # change output format to pandas
    result, error = await conn.query('SELECT * FROM test')
    conn.output_format('csv')  # change output format to CSV
    result, _ = await conn.query('SELECT TEST')
    conn.output_format('dataclass', model=Point)  # change output format to Dataclass Model
    result, _ = await conn.query('SELECT * FROM test')

Currently AsyncDB supports the following Output Formats:

  • CSV (comma-separated or parametrized)
  • JSON (using orjson)
  • iterable (returns a generator)
  • Recordset (Internal meta-Object for list of Records)
  • Pandas (a pandas Dataframe)
  • Datatable (Dt Dataframe)
  • Dataclass (exporting data to a dataclass with -optionally- passing Dataclass instance)
  • PySpark Dataframe

And others to come:

  • Apache Arrow (using pyarrow)
  • Polars (Using Python polars)
  • Dask Dataframe

Contribution guidelines

Please have a look at the Contribution Guide

  • Writing tests
  • Code review

Who do I talk to?

  • Repo owner or admin
  • Other community or team contact

License

AsyncDB is copyright of Jesus Lara (https://phenobarbital.info) and is licensed under BSD. I am providing code in this repository under an open source licenses, remember, this is my personal repository; the license that you receive is from me and not from my employeer.

Project details


Release history Release notifications | RSS feed

This version

2.7.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

asyncdb-2.7.9-pp310-pypy310_pp73-win_amd64.whl (219.0 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.9-pp39-pypy39_pp73-win_amd64.whl (219.0 kB view details)

Uploaded PyPy Windows x86-64

asyncdb-2.7.9-cp312-cp312-win_amd64.whl (226.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

asyncdb-2.7.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (905.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.9-cp311-cp311-win_amd64.whl (227.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

asyncdb-2.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (833.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.9-cp310-cp310-win_amd64.whl (227.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

asyncdb-2.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asyncdb-2.7.9-cp39-cp39-win_amd64.whl (228.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

asyncdb-2.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (776.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file asyncdb-2.7.9-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7e6888991fbf64b48a41ade0d5f5ccf2782f6c5d30f78bc48cbf5ee5e7d0870a
MD5 a9c753a18e4b1c10d629f22d62307901
BLAKE2b-256 1fea56016b01d9976cb8b2ec142c40afad488e3c64f5a62781391111bfc6e273

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 28070cf4323858cfaa6df9afa3be2ba40e59bb714a8c34f04b5fc847f1ead39a
MD5 dae6304e741f68ee4de9764a4ab8d112
BLAKE2b-256 68d4551170926f31302faa5f4baca1865cd7dcd0bc6fcf30dd759fddeb509fd1

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 226.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 56f0e941487a4e7f63e93dd290d7390042bafb64030e5eb1f9e5269847391051
MD5 93c2680083a8577d892844d8b37063ac
BLAKE2b-256 dc38ed2dbbd164e575eb1d45b5f896ef564b8eb4603337afef3793150bf5e0bf

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d6ce60a4f0c2748f3347603cff9b8f6ad4c007577102b44abf3bea052bdc2ff
MD5 18c782d63d8cedca7c0751cb26268a38
BLAKE2b-256 5d34922830866127ec4911028a9c45ea3be65a3ce22c6f60487f79bf48994e99

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 227.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b9c59d16be44928c558bf7993c1be763c1d4dcab79094cbdf28833ff40bb9422
MD5 defbba646ce897cce402363a225bee5e
BLAKE2b-256 338ed56b4a8e29d13687edcbd9ace05ff7a2075e3e0b414858a46363f7ca8c27

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55f8c40a8fd25aa71e44cb692cd11cc40e34e736fffae392c92d8c2b223416cc
MD5 2069b5c514f02430054a279e0ccada99
BLAKE2b-256 ff05d459f044ad6a5063baaa9c3f2555f8a641dc54c996f54cff38e22a6b21e8

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 227.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e699c1e54d3fc89c82dce79b34b662721a6e2aba4c0f902d589b087445cfb9d9
MD5 c9db6795acd8fa4803d7fc60c5ddc03c
BLAKE2b-256 f629953d029be6ea87bba8482f9cfc9355d5c2f3d3f1c5ccbc29618eab472bb3

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af2a3ac371318775801a8cde560e0c2b48ca646dd7a322d1aaadeaab645295db
MD5 b844035e6fc2fd8ff3aeafa35453a606
BLAKE2b-256 da164a99847f7c8cbb2185e5b68f8ce16a322b9bbcb4ef5bafa823e483dcc29f

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asyncdb-2.7.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 228.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for asyncdb-2.7.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6f8c78813b23fe3028512f1ef1ecb051c580bc0b808d25d61dc864fd59a77c86
MD5 c9adaa4dae6d80108fd135135002b1a7
BLAKE2b-256 11a4ff93a844808bcc0ee6b366908e1e5b430024d3780819a7b53a368d371747

See more details on using hashes here.

File details

Details for the file asyncdb-2.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asyncdb-2.7.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe59b9d9c34f9b5543cdb6b29b64f9237aff72dd3b0d0d4eaf21851f6da540e5
MD5 0cbdf0bf8b23837de23a319d0b6e319f
BLAKE2b-256 09030b0f081db44ca1fe06d29220b1df7893af8610debbf87b8b7182f05a9989

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page