Skip to main content

A asyncio driver for ClickHouse with native tcp protocol

Project description

asynch

pypi license workflows workflows

Introduction

asynch is an asyncio ClickHouse Python Driver with native (TCP) interface support, which reuse most of clickhouse-driver and comply with PEP249.

Install

> pip install asynch

Usage

Connect to ClickHouse

from asynch import connect

async def connect_database():
    conn = await connect(
        host = "127.0.0.1",
        port = 9000,
        database = "default",
        user = "default",
        password = "",
    )

Create table by sql

async def create_table():
    async with conn.cursor(cursor=DictCursor) as cursor:
        await cursor.execute('create database if not exists test')
        await cursor.execute("""
        CREATE TABLE if not exists test.asynch
            (
                `id`       Int32,
                `decimal`  Decimal(10, 2),
                `date`     Date,
                `datetime` DateTime,
                `float`    Float32,
                `uuid`     UUID,
                `string`   String,
                `ipv4`     IPv4,
                `ipv6`     IPv6

            )
            ENGINE = MergeTree
                ORDER BY id"""
        )

Use fetchone

async def fetchone():
    async with conn.cursor() as cursor:
        await cursor.execute("SELECT 1")
        ret = cursor.fetchone()
        assert ret == (1,)

Use fetchmany

async def fetchall():
    async with conn.cursor() as cursor:
        await cursor.execute("SELECT 1")
        ret = cursor.fetchall()
        assert ret == [(1,)]

Use DictCursor to get result with dict

async def dict_cursor():
    async with conn.cursor(cursor=DictCursor) as cursor:
        await cursor.execute("SELECT 1")
        ret = cursor.fetchall()
        assert ret == [{"1": 1}]

Insert data with dict

from asynch.cursors import DictCursor

async def insert_dict():
    async with conn.cursor(cursor=DictCursor) as cursor:
        ret = await cursor.execute(
            """INSERT INTO test.asynch(id,decimal,date,datetime,float,uuid,string,ipv4,ipv6) VALUES""",
            [
                {
                    "id": 1,
                    "decimal": 1,
                    "date": "2020-08-08",
                    "datetime": "2020-08-08 00:00:00",
                    "float": 1,
                    "uuid": "59e182c4-545d-4f30-8b32-cefea2d0d5ba",
                    "string": "1",
                    "ipv4": "0.0.0.0",
                    "ipv6": "::",
                }
            ],
        )
        assert ret == 1

Insert data with tuple

async def insert_tuple():
    async with conn.cursor(cursor=DictCursor) as cursor:
        ret = await cursor.execute(
            """INSERT INTO test.asynch(id,decimal,date,datetime,float,uuid,string,ipv4,ipv6) VALUES""",
            [
                (
                    1,
                    1,
                    "2020-08-08",
                    "2020-08-08 00:00:00",
                    1,
                    "59e182c4-545d-4f30-8b32-cefea2d0d5ba",
                    "1",
                    "0.0.0.0",
                    "::",
                )
            ],
        )
        assert ret == 1

Use connection pool

async def use_pool():
    pool = await asynch.create_pool()
    async with pool.acquire() as conn:
        async with conn.cursor() as cursor:
            await cursor.execute("SELECT 1")
            ret = cursor.fetchone()
            assert ret == (1,)
    pool.close()
    await pool.wait_closed()

ThanksTo

License

This project is licensed under the Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asynch-0.1.5.tar.gz (46.2 kB view details)

Uploaded Source

Built Distribution

asynch-0.1.5-py3-none-any.whl (64.6 kB view details)

Uploaded Python 3

File details

Details for the file asynch-0.1.5.tar.gz.

File metadata

  • Download URL: asynch-0.1.5.tar.gz
  • Upload date:
  • Size: 46.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for asynch-0.1.5.tar.gz
Algorithm Hash digest
SHA256 381d677341b5d11ea099e9e146af5895db862641e5b850d0bac13977fa95af5e
MD5 1069b7f245edb059f1ad6c6c9b5c1bef
BLAKE2b-256 1e522360e7751fea7e223712c02f64ab9f6f6b3f3a6f6aceda80505fc816e191

See more details on using hashes here.

File details

Details for the file asynch-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: asynch-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 64.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for asynch-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 455f17c0fade2232366368738b9afc181ebbfa20caa70ef7ceef073cdddd2ccc
MD5 8c7642bfc23bb59fcd5e162d65d4bbaa
BLAKE2b-256 be3020f81a67d8e36fcf1408f6e5f5a2471bb3cb1f7c812362b965b37f0d8bfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page