Yet another async SQL lib.
Project description
AsyncSQL
AsyncSQL aims to provide simple and efficient way to perform PostgreSQL requests with aiohttp.
Install
As python library AsyncSQL may be installed as follows:
(venv)$ pip install asyncsql
Settings
To connect to PostgreSQL common env vars should use.
For example the following values can be used when develop:
$ export PGHOST=172.19.0.2 # depends on which IP postgres container is using
$ export PGDATABASE=asyncsql
$ export PGUSER=postgres
$ export PGPASSWORD=xxx
By default listing data is paginated. The page size can be specify as follows:
$ export ASYNCSQL_PER_PAGE=25 # default: 50
Folder containing .sql files can be specify as follows:
$ export ASYNCSQL_SQL_DIR=./tests/data # default: ./sql_files
Migrate
To ease db setup a simple migrate
command is provided by AsyncSQL.
For example, we can load tests data as follows:
(venv)$ python -m asyncsql.migrate -d ./tests/data jobs # file-2 file-3
jobs... ok
No magic bullet here, files order matters and idempotency too.
Usage
Let's perform some queries on our jobs
test table.
First we need to define a Model
object to work with in our python code:
from datetime import datetime
from typing import Optional
from uuid import UUID
from asyncsql.models import Model
class Job(Model):
id: Optional[UUID] = None
enabled: bool = False
func: str
name: str
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
Then we need a Queries
instance:
from asyncsql.queries import Queries
jobs_queries = Queries(
"jobs",
model_cls=Job,
order_fields=("name",)
)
Let's connect as follows:
import asyncio
from asyncsql.backends import sql_backend
conn = await sql_backend.conn
As the db is empty simple select
should return an empty list and has_next
flag to False
:
await jobs_queries.select(conn)
# ([], False)
Let's insert some data:
for x in range(10):
await jobs_queries.insert(conn, Job(func="ping", name=f"ping-{x}"))
We should now have the following data:
[j.name for j in (await jobs_queries.select(conn))[0]]
# ['ping-0',
# 'ping-1',
# 'ping-2',
# 'ping-3',
# 'ping-4',
# 'ping-5',
# 'ping-6',
# 'ping-7',
# 'ping-8',
# 'ping-9']
We can limit the result changing the per_page
value as follows:
jobs_queries.per_page = 3
jobs, has_next = await jobs_queries.select(conn)
[j.name for j in jobs], has_next
# (['ping-0', 'ping-1', 'ping-2'], True)
As we would do in an API, we can get the next page with a Cursor
object
as follows:
from asyncsql.cursor import Cursor
Cursor(fields=("name",), obj=jobs[-1])
# gASV6wAAAAAAAAAojANhc2OUfZQojAJpZJSMJDRlNTM1YTQ4LWJmMjgtMTFlYi05ZDc3LTAyNDJhYzEzMDAwMpSMB2VuYWJsZWSUiYwEZnVuY5SMBHBpbmeUjARuYW1llIwGcGluZy0ylIwKY3JlYXRlZF9hdJSMCGRhdGV0aW1llIwIZGF0ZXRpbWWUk5RDCgflBRsUDycNJDGUaAqMCHRpbWV6b25llJOUaAqMCXRpbWVkZWx0YZSTlEsASwBLAIeUUpSFlFKUhpRSlIwKdXBkYXRlZF9hdJRoDEMKB+UFGxQPJw0kMZRoFYaUUpR1KX2UdJQu
where, values, _ = jobs_queries.get_where_from_cursor(_)
where, values
# ('name >= $1 AND id != $2', ['ping-2', '4e535a48-bf28-11eb-9d77-0242ac130002'])
jobs, has_next = await jobs_queries.select(conn, values=values, where=where)
[j.name for j in jobs], has_next
# (['ping-3', 'ping-4', 'ping-5'], True)
Job
object can be use for update too:
job = (await jobs_queries.select(conn, values=("ping-9",), where="name = $1"))[0][0]
job.id, job.name
# ('4e5692d0-bf28-11eb-9d77-0242ac130002', 'ping-9')
job.name = "ping-x"
new_job = await jobs_queries.update(conn, job)
new_job.name
# ping-x
Let's clean this demo:
jobs_queries.per_page = 10
for j in (await jobs_queries.select(conn))[0]:
await jobs_queries.delete_by_id(conn, j.id)
Ideas
- make smaller cursor: serializing the whole object may be an overhead
- work with templated .sql files instead of hard coded
sql
strings inQueries
Contributing
Contribution is welcome. It may be simple but tested as it started.
License
MIT
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file asyncsql-0.1.4.tar.gz
.
File metadata
- Download URL: asyncsql-0.1.4.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d666e8f68762131a83be2e168a7548d2a89964e2f7a3b9cfe92a6591e9dc4095 |
|
MD5 | 5777b1491fd1499049abb3a612b33c8c |
|
BLAKE2b-256 | 28ac0de2da7d1448477e3f7af6affa0d3a5ff475cda67e8d6400e7703ba650dd |
File details
Details for the file asyncsql-0.1.4-py2.py3-none-any.whl
.
File metadata
- Download URL: asyncsql-0.1.4-py2.py3-none-any.whl
- Upload date:
- Size: 10.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 111a42631fcf46069823d9b51b8a74f2a142870aba26f37836db114f90f72e84 |
|
MD5 | 3171d7bdd051602b4a882417a5c895bb |
|
BLAKE2b-256 | 522f33ee678117cb31cd4bb5a628c6f8389caea1db30ce824ec41437c6a1c696 |