Atomic AI – An attempt at a minimalist, flexible deep learning framework for diverse models.
Project description
atai
Atomic AI is a flexible, minimalist deep neural network training framework based on Jeremy Howard’s miniai from the fast.ai 2022 course.
Install
pip install atai
How to use
from atai.core import *
The following example demonstrates how the Atomic AI training framework can be used to train a custom model that predicts protein solubility.
Imports
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import init
from torch import optim
from torcheval.metrics import BinaryAccuracy, BinaryAUROC
from torcheval.metrics.functional import binary_auroc, binary_accuracy
from torchmetrics.classification import BinaryMatthewsCorrCoef
from torchmetrics.functional.classification import binary_matthews_corrcoef
import fastcore.all as fc
from functools import partial
Load Protein Solubility
This example uses the dataset from the
DeepSol paper by
Khurana et al. which was obtained at
https://zenodo.org/records/1162886. It consists of amino acid
sequences of peptides along with solubility labels that are 1 if the
peptide is soluble and 0 if the peptide is insoluble.
train_sqs = open('sol_data/train_src', 'r').read().splitlines()
train_tgs = list(map(int, open('sol_data/train_tgt', 'r').read().splitlines()))
valid_sqs = open('sol_data/val_src', 'r').read().splitlines()
valid_tgs = list(map(int, open('sol_data/val_tgt', 'r').read().splitlines()))
train_sqs[:2], train_tgs[:2]
(['GMILKTNLFGHTYQFKSITDVLAKANEEKSGDRLAGVAAESAEERVAAKVVLSKMTLGDLRNNPVVPYETDEVTRIIQDQVNDRIHDSIKNWTVEELREWILDHKTTDADIKRVARGLTSEIIAAVTKLMSNLDLIYGAKKIRVIAHANTTIGLPGTFSARLQPNHPTDDPDGILASLMEGLTYGIGDAVIGLNPVDDSTDSVVRLLNKFEEFRSKWDVPTQTCVLAHVKTQMEAMRRGAPTGLVFQSIAGSEKGNTAFGFDGATIEEARQLALQSGAATGPNVMYFETGQGSELSSDAHFGVDQVTMEARCYGFAKKFDPFLVNTVVGFIGPEYLYDSKQVIRAGLEDHFMGKLTGISMGCDVCYTNHMKADQNDVENLSVLLTAAGCNFIMGIPHGDDVMLNYQTTGYHETATLRELFGLKPIKEFDQWMEKMGFSENGKLTSRAGDASIFLK',
'MAHHHHHHMSFFRMKRRLNFVVKRGIEELWENSFLDNNVDMKKIEYSKTGDAWPCVLLRKKSFEDLHKLYYICLKEKNKLLGEQYFHLQNSTKMLQHGRLKKVKLTMKRILTVLSRRAIHDQCLRAKDMLKKQEEREFYEIQKFKLNEQLLCLKHKMNILKKYNSFSLEQISLTFSIKKIENKIQQIDIILNPLRKETMYLLIPHFKYQRKYSDLPGFISWKKQNIIALRNNMSKLHRLY'],
[1, 0])
len(train_sqs), len(train_tgs), len(valid_sqs), len(valid_tgs)
(62478, 62478, 6942, 6942)
Data Preparation
Create a sorted list of amino acid sequences aas including an empty
string for padding and determine the size of the vocabulary.
aas = sorted(list(set("".join(train_sqs))) + [""])
vocab_size = len(aas)
aas, vocab_size
(['',
'A',
'C',
'D',
'E',
'F',
'G',
'H',
'I',
'K',
'L',
'M',
'N',
'P',
'Q',
'R',
'S',
'T',
'V',
'W',
'Y'],
21)
Create dictionaries that translate between string and integer
representations of amino acids and define the corresponding encode and
decode functions.
str2int = {aa:i for i, aa in enumerate(aas)}
int2str = {i:aa for i, aa in enumerate(aas)}
encode = lambda s: [str2int[aa] for aa in s]
decode = lambda l: ''.join([int2str[i] for i in l])
print(encode("AYWCCCGGGHH"))
print(decode(encode("AYWCCCGGGHH")))
[1, 20, 19, 2, 2, 2, 6, 6, 6, 7, 7]
AYWCCCGGGHH
Figure out what the range of lengths of amino acid sequences in the dataset is.
train_lens = list(map(len, train_sqs))
min(train_lens), max(train_lens)
(19, 1691)
Create a function that drops all sequences above a chosen threshold and also returns a list of indices of the sequences that meet the threshold that can be used to obtain the correct labels.
def drop_long_sqs(sqs, threshold=1200):
new_sqs = []
idx = []
for i, sq in enumerate(sqs):
if len(sq) <= threshold:
new_sqs.append(sq)
idx.append(i)
return new_sqs, idx
Drop all sequences above your chosen threshold.
trnsqs, trnidx = drop_long_sqs(train_sqs, threshold=200)
vldsqs, vldidx = drop_long_sqs(valid_sqs, threshold=200)
len(trnidx), len(vldidx)
(18066, 1971)
max(map(len, trnsqs))
200
Create a function for zero padding all sequences.
def zero_pad(sq, length=1200):
new_sq = sq.copy()
if len(new_sq) < length:
new_sq.extend([0] * (length-len(new_sq)))
return new_sq
Now encode and zero pad all sequences and make sure that it worked out correctly.
trn = list(map(encode, trnsqs))
vld = list(map(encode, vldsqs))
print(f"Length of the first two sequences before zero padding: {len(trn[0])}, {len(trn[1])}")
trn = list(map(partial(zero_pad, length=200), trn))
vld = list(map(partial(zero_pad, length=200), vld))
print(f"Length of the first two sequences after zero padding: {len(trn[0])}, {len(trn[1])}");
Length of the first two sequences before zero padding: 116, 135
Length of the first two sequences after zero padding: 200, 200
Convert the data to torch.tensors unsing dtype=torch.int64 and check
for correctness.
trntns = torch.tensor(trn, dtype=torch.int64)
vldtns = torch.tensor(vld, dtype=torch.int64)
trntns.shape, trntns[0]
(torch.Size([18066, 200]),
tensor([11, 9, 1, 10, 2, 10, 10, 10, 10, 13, 18, 10, 6, 10, 10, 18, 16, 16, 9, 17, 10, 2, 16, 11, 4, 4, 1, 8, 12, 4, 15, 8, 14,
4, 18, 1, 6, 16, 10, 8, 5, 15, 1, 8, 16, 16, 8, 6, 10, 4, 2, 14, 16, 18, 17, 16, 15, 6, 3, 10, 1, 17, 2, 13, 15, 6,
5, 1, 18, 17, 6, 2, 17, 2, 6, 16, 1, 2, 6, 16, 19, 3, 18, 15, 1, 4, 17, 17, 2, 7, 2, 14, 2, 1, 6, 11, 3, 19, 17,
6, 1, 15, 2, 2, 15, 18, 14, 13, 10, 4, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]))
trntns.shape, vldtns.shape
(torch.Size([18066, 200]), torch.Size([1971, 200]))
Obtain the correct labels using the lists of indices obtained from the
drop_long_sqs function and convert the lists of labels to tensors in
torch.float32 format.
trnlbs = torch.tensor(train_tgs, dtype=torch.float32)[trnidx]
vldlbs = torch.tensor(valid_tgs, dtype=torch.float32)[vldidx]
trnlbs.shape, vldlbs.shape
(torch.Size([18066]), torch.Size([1971]))
Calculate the ratios of soluble peptides in the train and valid data.
trnlbs.sum().item()/trnlbs.shape[0], vldlbs.sum().item()/vldlbs.shape[0]
(0.4722129967895494, 0.4657534246575342)
These ratios tell us that there are slightly less than half soluble proteins in the training an validation data, and slightly more than half in the test set.
Dataset and DataLoaders
Turn train and valid data into datasets using the
Dataset class.
trnds = Dataset(trntns, trnlbs)
vldds = Dataset(vldtns, vldlbs)
trnds[0]
(tensor([11, 9, 1, 10, 2, 10, 10, 10, 10, 13, 18, 10, 6, 10, 10, 18, 16, 16, 9, 17, 10, 2, 16, 11, 4, 4, 1, 8, 12, 4, 15, 8, 14,
4, 18, 1, 6, 16, 10, 8, 5, 15, 1, 8, 16, 16, 8, 6, 10, 4, 2, 14, 16, 18, 17, 16, 15, 6, 3, 10, 1, 17, 2, 13, 15, 6,
5, 1, 18, 17, 6, 2, 17, 2, 6, 16, 1, 2, 6, 16, 19, 3, 18, 15, 1, 4, 17, 17, 2, 7, 2, 14, 2, 1, 6, 11, 3, 19, 17,
6, 1, 15, 2, 2, 15, 18, 14, 13, 10, 4, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]),
tensor(0.))
Use the get_dls
function to obtain the dataloaders from the train and valid datasets.
dls = get_dls(trnds, vldds, bs=32)
next(iter(dls.train))[0][:2], next(iter(dls.train))[1][:2]
(tensor([[11, 1, 7, 7, 7, 7, 7, 7, 11, 11, 13, 15, 16, 4, 12, 14, 9, 4, 4, 4, 4, 19, 4, 10, 7, 13, 10, 5, 10, 16, 9, 8, 13,
12, 9, 9, 3, 8, 3, 9, 12, 13, 1, 10, 16, 1, 10, 8, 17, 10, 8, 12, 4, 4, 4, 4, 9, 4, 18, 5, 16, 20, 4, 13, 15, 15,
9, 12, 10, 9, 9, 9, 8, 17, 4, 9, 6, 14, 8, 8, 20, 9, 9, 3, 15, 15, 12, 10, 20, 4, 13, 20, 14, 14, 12, 9, 12, 3, 9,
8, 12, 20, 5, 4, 9, 9, 12, 5, 6, 6, 12, 1, 3, 8, 16, 9, 4, 4, 4, 18, 10, 3, 18, 4, 11, 3, 4, 4, 6, 17, 17, 18,
17, 17, 1, 4, 14, 6, 6, 3, 7, 16, 16, 14, 12, 18, 16, 12, 12, 14, 4, 1, 17, 3, 14, 17, 16, 8, 6, 4, 18, 10, 18, 2, 10,
16, 11, 11, 12, 10, 9, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[11, 10, 1, 11, 18, 12, 9, 18, 10, 3, 19, 8, 15, 16, 10, 5, 19, 9, 4, 4, 11, 4, 10, 17, 10, 18, 6, 10, 14, 12, 16, 6, 9,
17, 17, 5, 18, 12, 18, 8, 1, 16, 6, 14, 5, 17, 4, 3, 11, 8, 13, 17, 18, 6, 5, 12, 11, 15, 9, 8, 17, 9, 6, 12, 18, 17,
8, 9, 10, 19, 3, 8, 6, 6, 14, 13, 15, 5, 15, 16, 11, 19, 4, 15, 20, 2, 15, 6, 18, 12, 1, 8, 18, 5, 11, 18, 3, 1, 1,
3, 4, 4, 9, 10, 4, 1, 16, 15, 12, 4, 10, 11, 14, 10, 10, 3, 9, 13, 14, 10, 3, 1, 8, 13, 18, 10, 18, 10, 6, 12, 9, 9,
3, 10, 13, 6, 1, 10, 3, 4, 15, 14, 10, 8, 4, 15, 11, 12, 10, 16, 16, 8, 14, 12, 15, 4, 8, 2, 2, 20, 16, 8, 16, 2, 9,
4, 9, 4, 12, 8, 3, 8, 17, 10, 14, 19, 10, 8, 3, 7, 16, 9, 1, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]]),
tensor([1., 0.]))
Design Your Model
Let’s create a tiny model (~10k parameters) that uses a sequence of 1-dimensional convolutional layers with skip connections, kaiming he initialization, leaky relus, batchnorm, and dropout.
First, obtain a single batch from dls to help design the model.
idx = next(iter(dls.train))[0] ## a single batch
idx, idx.shape
(tensor([[11, 9, 17, ..., 0, 0, 0],
[16, 12, 1, ..., 0, 0, 0],
[16, 1, 14, ..., 0, 0, 0],
...,
[11, 1, 7, ..., 0, 0, 0],
[11, 3, 13, ..., 0, 0, 0],
[16, 17, 12, ..., 0, 0, 0]]),
torch.Size([32, 200]))
Custom Modules
def conv1d(ni, nf, ks=3, stride=2, act=nn.ReLU, norm=None, bias=None):
if bias is None: bias = not isinstance(norm, (nn.BatchNorm1d,nn.BatchNorm2d,nn.BatchNorm3d))
layers = [nn.Conv1d(ni, nf, stride=stride, kernel_size=ks, padding=ks//2, bias=bias)]
if norm: layers.append(norm(nf))
if act: layers.append(act())
return nn.Sequential(*layers)
def _conv1d_block(ni, nf, stride, act=nn.ReLU, norm=None, ks=3):
return nn.Sequential(conv1d(ni, nf, stride=1, act=act, norm=norm, ks=ks),
conv1d(nf, nf, stride=stride, act=None, norm=norm, ks=ks))
class ResBlock1d(nn.Module):
def __init__(self, ni, nf, stride=1, ks=3, act=nn.ReLU, norm=None):
super().__init__()
self.convs = _conv1d_block(ni, nf, stride=stride, ks=ks, act=act, norm=norm)
self.idconv = fc.noop if ni==nf else conv1d(ni, nf, stride=1, ks=1, act=None)
self.pool = fc.noop if stride==1 else nn.AvgPool1d(stride, ceil_mode=True)
self.act = act()
def forward(self, x): return self.act(self.convs(x) + self.pool(self.idconv(x)))
The following module switches the rank order from BLC to BCL.
class Reshape(nn.Module):
def forward(self, x):
B, L, C = x.shape
return x.view(B, C, L)
Model Architecture
lr = 1e-2
epochs = 30
n_embd = 16
dls = get_dls(trnds, vldds, bs=32)
act_genrelu = partial(GeneralRelu, leak=0.1, sub=0.4)
model = nn.Sequential(nn.Embedding(vocab_size, n_embd, padding_idx=0), Reshape(),
ResBlock1d(n_embd, 2, ks=15, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(2, 4, ks=13, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 4, ks=11, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 4, ks=9, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 8, ks=7, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(8, 8, ks=5, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(8, 16, ks=3, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(16, 32, ks=3, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
nn.Flatten(1, -1),
nn.Linear(32, 1),
nn.Flatten(0, -1),
nn.Sigmoid())
model(idx).shape
torch.Size([32])
iw = partial(init_weights, leaky=0.1)
model = model.apply(iw)
metrics = MetricsCB(BinaryAccuracy(), BinaryMatthewsCorrCoef(), BinaryAUROC())
astats = ActivationStats(fc.risinstance(GeneralRelu))
cbs = [DeviceCB(), ProgressCB(plot=False), metrics, astats]
learn = TrainLearner(model, dls, F.binary_cross_entropy, lr=lr, cbs=cbs, opt_func=torch.optim.AdamW)
print(f"Parameters total: {sum(p.nelement() for p in model.parameters())}")
learn.lr_find(start_lr=1e-4, gamma=1.05, av_over=3, max_mult=5)
Parameters total: 10175
<style>
/* Turns off some styling */
progress {
/* gets rid of default border in Firefox and Opera. */
border: none;
/* Needs to be in here for Safari polyfill so background images work as expected. */
background-size: auto;
}
progress:not([value]), progress:not([value])::-webkit-progress-bar {
background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);
}
.progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {
background: #F44336;
}
</style>
<div>
<progress value='0' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
0.00% [0/10 00:00<?]
</div>
This is a pretty noisy training set, so the learning rate finder does
not work very well. Yet it is possible to get a somewhat informative
result using the av_over keyword argument that tells
lr_find to average
over the specified number of batches for each learning rate tested. It
also helps to dial the gamma value down from its default value of
1.3.
Training
learn.fit(epochs)
<style>
/* Turns off some styling */
progress {
/* gets rid of default border in Firefox and Opera. */
border: none;
/* Needs to be in here for Safari polyfill so background images work as expected. */
background-size: auto;
}
progress:not([value]), progress:not([value])::-webkit-progress-bar {
background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);
}
.progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {
background: #F44336;
}
</style>
| BinaryAccuracy | BinaryMatthewsCorrCoef | BinaryAUROC | loss | epoch | train |
|---|---|---|---|---|---|
| 0.510 | 0.008 | 0.507 | 0.722 | 0 | train |
| 0.527 | -0.033 | 0.494 | 0.691 | 0 | eval |
| 0.515 | 0.004 | 0.506 | 0.695 | 1 | train |
| 0.534 | 0.003 | 0.520 | 0.691 | 1 | eval |
| 0.537 | 0.054 | 0.526 | 0.692 | 2 | train |
| 0.530 | 0.058 | 0.550 | 0.693 | 2 | eval |
| 0.553 | 0.090 | 0.551 | 0.688 | 3 | train |
| 0.562 | 0.108 | 0.575 | 0.684 | 3 | eval |
| 0.589 | 0.170 | 0.607 | 0.671 | 4 | train |
| 0.619 | 0.234 | 0.663 | 0.647 | 4 | eval |
| 0.622 | 0.247 | 0.630 | 0.653 | 5 | train |
| 0.643 | 0.302 | 0.676 | 0.637 | 5 | eval |
| 0.627 | 0.260 | 0.642 | 0.650 | 6 | train |
| 0.649 | 0.313 | 0.675 | 0.628 | 6 | eval |
| 0.633 | 0.272 | 0.647 | 0.644 | 7 | train |
| 0.650 | 0.309 | 0.648 | 0.637 | 7 | eval |
| 0.634 | 0.276 | 0.652 | 0.640 | 8 | train |
| 0.650 | 0.314 | 0.683 | 0.620 | 8 | eval |
| 0.637 | 0.284 | 0.646 | 0.641 | 9 | train |
| 0.651 | 0.320 | 0.685 | 0.617 | 9 | eval |
| 0.639 | 0.287 | 0.661 | 0.636 | 10 | train |
| 0.645 | 0.308 | 0.671 | 0.647 | 10 | eval |
| 0.638 | 0.281 | 0.663 | 0.636 | 11 | train |
| 0.646 | 0.298 | 0.690 | 0.620 | 11 | eval |
| 0.641 | 0.286 | 0.670 | 0.632 | 12 | train |
| 0.648 | 0.296 | 0.685 | 0.619 | 12 | eval |
| 0.641 | 0.290 | 0.668 | 0.632 | 13 | train |
| 0.662 | 0.323 | 0.691 | 0.618 | 13 | eval |
| 0.643 | 0.290 | 0.675 | 0.630 | 14 | train |
| 0.641 | 0.286 | 0.677 | 0.627 | 14 | eval |
| 0.643 | 0.289 | 0.676 | 0.630 | 15 | train |
| 0.659 | 0.311 | 0.699 | 0.616 | 15 | eval |
| 0.644 | 0.291 | 0.677 | 0.629 | 16 | train |
| 0.652 | 0.314 | 0.690 | 0.613 | 16 | eval |
| 0.646 | 0.296 | 0.675 | 0.626 | 17 | train |
| 0.645 | 0.282 | 0.694 | 0.622 | 17 | eval |
| 0.642 | 0.288 | 0.678 | 0.626 | 18 | train |
| 0.648 | 0.332 | 0.677 | 0.639 | 18 | eval |
| 0.645 | 0.292 | 0.685 | 0.625 | 19 | train |
| 0.634 | 0.260 | 0.698 | 0.615 | 19 | eval |
| 0.649 | 0.302 | 0.689 | 0.621 | 20 | train |
| 0.651 | 0.344 | 0.710 | 0.617 | 20 | eval |
| 0.648 | 0.299 | 0.685 | 0.624 | 21 | train |
| 0.660 | 0.315 | 0.700 | 0.614 | 21 | eval |
| 0.648 | 0.297 | 0.691 | 0.620 | 22 | train |
| 0.563 | 0.168 | 0.679 | 0.672 | 22 | eval |
| 0.651 | 0.303 | 0.690 | 0.620 | 23 | train |
| 0.654 | 0.330 | 0.710 | 0.611 | 23 | eval |
| 0.650 | 0.304 | 0.691 | 0.620 | 24 | train |
| 0.668 | 0.344 | 0.711 | 0.599 | 24 | eval |
| 0.654 | 0.311 | 0.692 | 0.617 | 25 | train |
| 0.649 | 0.294 | 0.698 | 0.620 | 25 | eval |
| 0.650 | 0.301 | 0.690 | 0.617 | 26 | train |
| 0.642 | 0.320 | 0.697 | 0.611 | 26 | eval |
| 0.650 | 0.303 | 0.688 | 0.620 | 27 | train |
| 0.663 | 0.334 | 0.708 | 0.625 | 27 | eval |
| 0.652 | 0.308 | 0.694 | 0.616 | 28 | train |
| 0.672 | 0.356 | 0.711 | 0.597 | 28 | eval |
| 0.651 | 0.304 | 0.695 | 0.617 | 29 | train |
| 0.659 | 0.322 | 0.702 | 0.603 | 29 | eval |
Inspect Activations
dls = get_dls(trnds, vldds, bs=256)
model = nn.Sequential(nn.Embedding(vocab_size, n_embd, padding_idx=0), Reshape(),
ResBlock1d(n_embd, 2, ks=15, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(2, 4, ks=13, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 4, ks=11, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 4, ks=9, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(4, 8, ks=7, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(8, 8, ks=5, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(8, 16, ks=3, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
ResBlock1d(16, 32, ks=3, stride=2, norm=nn.BatchNorm1d, act=act_genrelu), nn.Dropout(0.1),
nn.Flatten(1, -1),
nn.Linear(32, 1),
nn.Flatten(0, -1),
nn.Sigmoid())
model = model.apply(iw)
astats = ActivationStats(fc.risinstance(GeneralRelu))
cbs = [DeviceCB(), astats]
learn = TrainLearner(model, dls, F.binary_cross_entropy, lr=lr, cbs=cbs, opt_func=torch.optim.AdamW)
print(f"Parameters total: {sum(p.nelement() for p in model.parameters())}")
learn.fit(1)
Parameters total: 10175
astats.color_dim()
astats.plot_stats()
astats.dead_chart()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file atai-0.0.6.tar.gz.
File metadata
- Download URL: atai-0.0.6.tar.gz
- Upload date:
- Size: 28.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c748aae83d33540f8af51cba3db0216a76698402c3b36620b863e799df750410
|
|
| MD5 |
36b35cae1d6e3bd971127ecfd357f51d
|
|
| BLAKE2b-256 |
1030b6fb53713292c22a347dcc8a38d242f3a028f8c64ffe16f9e61c573cc46a
|
File details
Details for the file atai-0.0.6-py3-none-any.whl.
File metadata
- Download URL: atai-0.0.6-py3-none-any.whl
- Upload date:
- Size: 21.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
dd812447705a6b50462321b59f981d048703f10321bd9d5b431c4ce5bda546ae
|
|
| MD5 |
a98d2bb984de629204bc3869008b9d24
|
|
| BLAKE2b-256 |
765ac586200963bc35c8c41cdb61bf4de4c2961801ce7c21317958f7f0e4853f
|