Skip to main content

turn apple health export.xml into parquet

Project description

Atlas

Atlas

Atlas lets you explore your Apple Health data.


PyPI Tests Changelog License

Installation

Install Atlas using pip:

pip install atlas-db

Upgrade Atlas using pip:

pip install atlas-db --upgrade

Uninstall Expanse (old name) using pipx:

pipx uninstall expanse

Explore

First we create the .parquet file from the export.xml file.

atlas parquet export.xml -o ah.parquet

We can explore the data in many ways.

It is just a table/dataframe/parquet file with 5 columns.

But here we'll use clickhouse local:

clickhouse local

Let's take a look at the table.

DESCRIBE TABLE `ah.parquet`
┌─name────┬─type────────────────────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ type    │ Nullable(String)        │              │                    │         │                  │                │
│ start   │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ end     │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ created │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ value   │ Nullable(String)        │              │                    │         │                  │                │
└─────────┴─────────────────────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘

What kind of "types" do we have and how many?

SELECT
    type,
    COUNT(*) AS count
FROM `ah.parquet`
GROUP BY type
ORDER BY count DESC
┌─type───────────────────────────┬──count─┐
│ ActiveEnergyBurned             │ 879902 │
│ HeartRate                      │ 451854 │
│ BasalEnergyBurned              │ 289031 │
│ DistanceWalkingRunning         │ 260500 │
│ StepCount                      │ 217384 │
│ PhysicalEffort                 │  69747 │
│ AppleExerciseTime              │  61363 │
│ AppleStandTime                 │  58309 │
│ EnvironmentalAudioExposure     │  44535 │
│ SleepAnalysis                  │  36599 │
│ WalkingStepLength              │  28281 │
│ WalkingSpeed                   │  28281 │
│ RespiratoryRate                │  27829 │
│ AppleStandHour                 │  25877 │
│ FlightsClimbed                 │  22690 │
│ WalkingDoubleSupportPercentage │  21900 │
│ WalkingAsymmetryPercentage     │  13820 │
│ HeartRateVariabilitySDNN       │  11961 │
│ OxygenSaturation               │   4912 │
│ StairDescentSpeed              │   4718 │
│ StairAscentSpeed               │   4249 │
│ DistanceCycling                │   2890 │
│ TimeInDaylight                 │   2403 │
│ HeadphoneAudioExposure         │   2323 │
│ RestingHeartRate               │   1399 │
│ WalkingHeartRateAverage        │   1176 │
│ DistanceSwimming               │    455 │
│ SwimmingStrokeCount            │    455 │
│ AppleSleepingWristTemperature  │    442 │
│ RunningSpeed                   │    391 │
│ VO2Max                         │    366 │
│ RunningPower                   │    173 │
│ DietaryCaffeine                │    171 │
│ AppleWalkingSteadiness         │    138 │
│ SixMinuteWalkTestDistance      │    122 │
│ HeartRateRecoveryOneMinute     │     76 │
│ RunningVerticalOscillation     │     74 │
│ RunningGroundContactTime       │     67 │
│ RunningStrideLength            │     54 │
│ MindfulSession                 │     34 │
│ HighHeartRateEvent             │     18 │
│ AudioExposureEvent             │     14 │
│ BodyMass                       │     14 │
│ Height                         │      5 │
│ Fatigue                        │      1 │
│ HKDataTypeSleepDurationGoal    │      1 │
└────────────────────────────────┴────────┘

What's our total step count?

[!NOTE]
The value column is type Nullable(String) so we have to cast toFloat64 to sum up the step values.

SELECT sum(toFloat64(value))
FROM `ah.parquet`
WHERE type = 'StepCount'
┌─sum(toFloat64(value))─┐
│              30295811 │
└───────────────────────┘

30.295.811 (30.29 million) steps. That's a lot of steps!

How to get the Apple Health export.xml file

group-figma-small

  • open the Apple Health app on iOS
  • tap on your profile picture (or initials) at the top right
  • tap on Export All Health Data
  • tap on Export
  • wait a few seconds to a few minutes (~3min for 10 years of data)
  • get the export.zip archive via Airdrop to a Mac (or save to Files)

[!NOTE]
The export.xml file is in the export.zip archive.

You can expand the export.zip file by double-clicking on it.

This creates a directory named apple_health_export and in it is the export.xml file.

See: Apple Support on how to export Apple Health and Fitness in XML format

Usage

atlas parquet export.xml

Features

  • turn export.xml into a simple parquet file

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

atlas_db-0.2.11.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

atlas_db-0.2.11-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file atlas_db-0.2.11.tar.gz.

File metadata

  • Download URL: atlas_db-0.2.11.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for atlas_db-0.2.11.tar.gz
Algorithm Hash digest
SHA256 0793e681ee86e8d01068a34c550c0133a10285ba1391b251a22b1cd6e7b5c50e
MD5 08f97704524b61e2bc95b1011acf68a1
BLAKE2b-256 429386d9f73b3bf8994a273304666eb03c59578f449c3746225bbb84135cc70e

See more details on using hashes here.

File details

Details for the file atlas_db-0.2.11-py3-none-any.whl.

File metadata

  • Download URL: atlas_db-0.2.11-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for atlas_db-0.2.11-py3-none-any.whl
Algorithm Hash digest
SHA256 22650728c8a7534e3fd337258837f2ffa06da1cd0aa1b4c84965e4fa126ec3f9
MD5 e7fcf48b06d36185be50fa404c4fa5db
BLAKE2b-256 3fba2f868054481ca5864bf4fc82af45403a42c7ef646854c0692c51fd17a7db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page