Skip to main content

turn apple health export.xml into parquet

Project description

Atlas

Atlas

Atlas lets you explore your Apple Health data.


PyPI Tests Changelog License

Installation

Install expanse using pip:

pip install atlas-db

Explore

First we create the .parquet file from the export.xml file.

atlas parquet export.xml -o ah.parquet

We can explore the data in many ways.

It is just a table/dataframe/parquet file with 5 columns.

But here we'll use clickhouse local:

clickhouse local

Let's take a look at the table.

DESCRIBE TABLE `ah.parquet`
┌─name────┬─type────────────────────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ type    │ Nullable(String)        │              │                    │         │                  │                │
│ start   │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ end     │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ created │ Nullable(DateTime64(6)) │              │                    │         │                  │                │
│ value   │ Nullable(String)        │              │                    │         │                  │                │
└─────────┴─────────────────────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘

What kind of "types" do we have and how many?

SELECT
    type,
    COUNT(*) AS count
FROM `ah.parquet`
GROUP BY type
ORDER BY count DESC
┌─type───────────────────────────┬──count─┐
│ ActiveEnergyBurned             │ 879902 │
│ HeartRate                      │ 451854 │
│ BasalEnergyBurned              │ 289031 │
│ DistanceWalkingRunning         │ 260500 │
│ StepCount                      │ 217384 │
│ PhysicalEffort                 │  69747 │
│ AppleExerciseTime              │  61363 │
│ AppleStandTime                 │  58309 │
│ EnvironmentalAudioExposure     │  44535 │
│ SleepAnalysis                  │  36599 │
│ WalkingStepLength              │  28281 │
│ WalkingSpeed                   │  28281 │
│ RespiratoryRate                │  27829 │
│ AppleStandHour                 │  25877 │
│ FlightsClimbed                 │  22690 │
│ WalkingDoubleSupportPercentage │  21900 │
│ WalkingAsymmetryPercentage     │  13820 │
│ HeartRateVariabilitySDNN       │  11961 │
│ OxygenSaturation               │   4912 │
│ StairDescentSpeed              │   4718 │
│ StairAscentSpeed               │   4249 │
│ DistanceCycling                │   2890 │
│ TimeInDaylight                 │   2403 │
│ HeadphoneAudioExposure         │   2323 │
│ RestingHeartRate               │   1399 │
│ WalkingHeartRateAverage        │   1176 │
│ DistanceSwimming               │    455 │
│ SwimmingStrokeCount            │    455 │
│ AppleSleepingWristTemperature  │    442 │
│ RunningSpeed                   │    391 │
│ VO2Max                         │    366 │
│ RunningPower                   │    173 │
│ DietaryCaffeine                │    171 │
│ AppleWalkingSteadiness         │    138 │
│ SixMinuteWalkTestDistance      │    122 │
│ HeartRateRecoveryOneMinute     │     76 │
│ RunningVerticalOscillation     │     74 │
│ RunningGroundContactTime       │     67 │
│ RunningStrideLength            │     54 │
│ MindfulSession                 │     34 │
│ HighHeartRateEvent             │     18 │
│ AudioExposureEvent             │     14 │
│ BodyMass                       │     14 │
│ Height                         │      5 │
│ Fatigue                        │      1 │
│ HKDataTypeSleepDurationGoal    │      1 │
└────────────────────────────────┴────────┘

What's our total step count?

[!NOTE]
The value column is type Nullable(String) so we have to cast toFloat64 to sum up the step values.

SELECT sum(toFloat64(value))
FROM `ah.parquet`
WHERE type = 'StepCount'
┌─sum(toFloat64(value))─┐
│              30295811 │
└───────────────────────┘

30.295.811 (30.29 million) steps. That's a lot of steps!

How to get the Apple Health export.xml file

group-figma-small

  • open the Apple Health app on iOS
  • tap on your profile picture (or initials) at the top right
  • tap on Export All Health Data
  • tap on Export
  • wait a few seconds to a few minutes (~3min for 10 years of data)
  • get the export.zip archive via Airdrop to a Mac (or save to Files)

[!NOTE]
The export.xml file is in the export.zip archive.

You can expand the export.zip file by double-clicking on it.

This creates a directory named apple_health_export and in it is the export.xml file.

See: Apple Support on how to export Apple Health and Fitness in XML format

Usage

expanse parquet export.xml

Features

  • turn export.xml into a simple parquet file

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

atlas_db-0.2.9.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

atlas_db-0.2.9-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file atlas_db-0.2.9.tar.gz.

File metadata

  • Download URL: atlas_db-0.2.9.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for atlas_db-0.2.9.tar.gz
Algorithm Hash digest
SHA256 44cb665c4279023fb48a869aaf5d2f538d18cd82e5e489c6070ac9c542d06c26
MD5 ac6b1e92749e13b122e33787c3b61159
BLAKE2b-256 ec3e034ebe03b3836177510d3278700b70a32ac29533a0f8b5f04615ab2ce8e8

See more details on using hashes here.

File details

Details for the file atlas_db-0.2.9-py3-none-any.whl.

File metadata

  • Download URL: atlas_db-0.2.9-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for atlas_db-0.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 6afab44caae27764bf53c66203c94162c41429dec6f3beee897b0753b12747ff
MD5 fbbffaf132982959c2e6bcf3dbb49851
BLAKE2b-256 5fe986dd55a5c56d45e216098ba90a4a2f43a98542cce4d2f74d68d9824ab997

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page