Skip to main content

A/T/N staging for Alzheimer's Disease based on CSF biomarkers

Project description

pipeline status coverage report

atn

Based on the A/T/N/ classification scheme for Alzheimer's disease biomarkers Jack et al., 2016, what this Python module does is basically applying predefined thresholds to a given DataFrame (containing biomarker data such as cerebrospinal fluid (CSF) levels of ABeta42, ptau, ttau) and building multiple lists of subjects with distinct profiles according to their CSF biomarkers.

Example (with random data):

import random
n = 10

abeta42 = [random.randrange(600e3, 1800e3)/1e3 for e in range(0, n)]
ptau = [random.randrange(4e3, 80e3)/1e3 for e in range(0, n)]
ttau = [random.randrange(97e3, 500e3)/1e3 for e in range(0, n)]
data = pd.DataFrame(data=[abeta42, ptau, ttau], index=['abeta42', 'ptau', 'ttau']).transpose()
data
abeta42 ptau ttau
0 1142.327 76.636 375.448
1 833.484 77.321 181.75
2 951.601 6.981 309.215
3 1623.797 65.063 232.303
4 920.706 62.899 310.1
5 704.215 58.526 160.826
6 1687.357 53.335 422.249
7 1701.997 68.676 173.33
8 1774.046 37.214 255.638
9 939.946 21.128 164.803
import atn
staging = atn.stage(data, thresholds = {'abeta42':1100, 'ptau':19.2, 'ttau':242})
staging
A T N
ID
0 FALSE TRUE TRUE
1 TRUE TRUE FALSE
2 TRUE FALSE TRUE
3 FALSE TRUE FALSE
4 TRUE TRUE TRUE
5 TRUE TRUE FALSE
6 FALSE TRUE TRUE
7 FALSE TRUE FALSE
8 FALSE TRUE TRUE
9 TRUE TRUE FALSE
print(atn.staging_summary(staging))

CSF amyloid (A) positive/negative: 5/5 CSF ptau (T) positive/negative: 9/1 CSF ttau (N) positive/negative: 5/5

A+T+: 4 A+T-: 1 A-T-: 0 A-T+ (SNAPs): 5

A+T+N+: 1 A+T+N-: 3 A-T+N+: 3 A-T+N-: 2 A-T-N-: 0 A-T-N+: 0 Total subjects: 10

So yes, it is simple, stupid. But this allows one to quickly select groups of subjects as follows:

groups = atn.groups(staging)
data.loc[groups['A+'].index]
abeta42 ptau ttau
ID
1 833.484 77.321 181.75
2 951.601 6.981 309.215
4 920.706 62.899 310.1
5 704.215 58.526 160.826
9 939.946 21.128 164.803

Dependencies

  • Python >= 3.5
  • Pandas >= 0.24.1

Install

First make sure you have installed all the dependencies listed above. Then you can install atn by running the following command in a command prompt:

pip install atn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

atn-0.0.2.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

atn-0.0.2-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file atn-0.0.2.tar.gz.

File metadata

  • Download URL: atn-0.0.2.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.6.7

File hashes

Hashes for atn-0.0.2.tar.gz
Algorithm Hash digest
SHA256 4e6aa848bc899a4585defe5e16e809759cd6d28734da99e83881efe8ba0d1247
MD5 1c1ddaa9e9c4c08fbad9c7199f392fdd
BLAKE2b-256 55d273da5d9b517b85e73ff5422fd3daa81acc06be9af9ac08b2e551dcf11960

See more details on using hashes here.

File details

Details for the file atn-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: atn-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.6.7

File hashes

Hashes for atn-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4fdc22b266436af5b0990fce402d47863ab72f39958d0982aeface7677c3c1fc
MD5 f74154784bb45247d24d80dc3c8d0e50
BLAKE2b-256 fd3944ffd40287f1e4dae15f934a94b77c84e99832ac830659c937f633fb6b77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page