No project description provided
Project description
Dynamics
Netwonian and stochastic dynamics backends for atooms.
Quick start
Run a molecular dynamics simulation of a Lennard-Jones system from an existing xyz file
from atooms.trajectory import Trajectory
from atooms.simulation import Simulation
from atooms.dynamics.netwonian import VelocityVerlet
# Start from the last frame of input.xyz
trajectory = Trajectory('input.xyz')
system = trajectory[-1]
system.interaction = Interaction('lennard_jones')
backend = VelocityVerlet(system, timestep=0.002)
sim = Simulation(backend, steps=200)
sim.run()
Do the same via the API, storing configurations in output.xyz
,
from atooms.dynamics.api import md
md('input.xyz', 'output.xyz',
method='velocity-verlet', model='lennard_jones',
dt=0.002, nsteps=200, config_number=20)
or from the command line
md.py --method velocity-verlet -n 200 --dt 0.002 --config-number 20 input.xyz output.xyz
Features
Integration algorithms (work in progress)
- Netwonian dynamics
- velocity-Verlet
- Nose-Poincaré
- event-driven
- Stochastic dynamics
- overdamped Langevin dynamics
Documentation
Check out the tutorial for more examples and the public API for full details.
Org-mode and jupyter notebooks are available under docs/
. You can run the tutorial interactively on Binder.
Installation
From pypi
pip install atooms-dynamics
You can clone the code repository and install from source
git clone https://framagit.org/atooms/dynamics.git
cd dynamics
make install
Contributing
Contributions to the project are welcome. If you wish to contribute, check out these guidelines.
Authors
Daniele Coslovich: https://www.units.it/daniele.coslovich/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file atooms_dynamics-1.0.0-py2.py3-none-any.whl
.
File metadata
- Download URL: atooms_dynamics-1.0.0-py2.py3-none-any.whl
- Upload date:
- Size: 13.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3523badb90ab3d1205800a73fc04b87c3441163233f223c63d095870cbc3416f |
|
MD5 | bebef8b36305d9a0a22135d0839a44ad |
|
BLAKE2b-256 | 06c5bae8522786cbd31f9fe87d9edae417b97b0fca8771bc82468526a1c4abf1 |