Skip to main content

AUCMEDI - a framework for Automated Classification of Medical Images

Project description

aucmedi_logo

shield_python shield_build shield_coverage shield_docs shield_pypi_version shield_pypi_downloads shield_license

The open-source software AUCMEDI allows fast setup of medical image classification pipelines with state-of-the-art methods via an intuitive, high-level Python API or via an AutoML deployment through Docker/CLI.

Resources

How to cite

AUCMEDI is currently unpublished. But coming soon!

In the meantime:
Please cite our base framework MIScnn as well as the AUCMEDI GitHub repository:

Müller, D., Kramer, F. MIScnn: a framework for medical image segmentation with
convolutional neural networks and deep learning. BMC Med Imaging 21, 12 (2021).
https://doi.org/10.1186/s12880-020-00543-7
Müller, D., Mayer, S., Hartmann, D., Meyer, P., Schneider, P., Soto-Rey, I., & Kramer, F. (2022).
AUCMEDI: a framework for Automated Classification of Medical Images (Version X.Y.Z) [Computer software].
GitHub repository. https://github.com/frankkramer-lab/aucmedi

Thank you for citing our work.

Lead Author

Dominik Müller
Email: dominik.mueller@informatik.uni-augsburg.de
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aucmedi-0.10.0.tar.gz (152.1 kB view details)

Uploaded Source

Built Distribution

aucmedi-0.10.0-py3-none-any.whl (358.8 kB view details)

Uploaded Python 3

File details

Details for the file aucmedi-0.10.0.tar.gz.

File metadata

  • Download URL: aucmedi-0.10.0.tar.gz
  • Upload date:
  • Size: 152.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for aucmedi-0.10.0.tar.gz
Algorithm Hash digest
SHA256 dc2d8736301bb40310ac6e5658dbf7e272b65bf80e8ef7c675606af4efc1a6b1
MD5 ee5b615cb49e7da551c8c1a6153ae9c6
BLAKE2b-256 893ce85bfcf88f9686ff89e5b9859187a1b8426303e4eb3ee932b104dfecb4dc

See more details on using hashes here.

File details

Details for the file aucmedi-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: aucmedi-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 358.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for aucmedi-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b96c260ee883d4e20f9ed5b3414a5e6abc454550151dc3f1be479a725379bd17
MD5 6742744f963ba28a2ed1f6264e2214ee
BLAKE2b-256 4b64fa403abde4999a4a73c9ea8408aebbb1a5cd8b84144d167bf5ed6c845a04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page