Skip to main content

Audio data transformations library with a command-line interface.

Project description

Audio Transformers

Tests Coverage Status Licence: MIT PyPI version Python version support Code Style: Black

A python library for audio signals transformations.

Setup

Prerequisites

Requires ffmpeg, and Python >= 3.10

Installation

pip install audio-transformers

Command-Line Interface

List Available Transformations

Run:

audio transform list

Output:

Name               Description
-----------------  --------------------------------------------------
BandPass           Apply band-pass filter.
BandStop           Apply band-stop filter.
GaussianNoise      Add gaussian noise to the signal.
HighPass           Apply high-pass filter.
Inversion          Inverse waveform polarity by multiplying it by -1.
LowPass            Apply low-pass filter.
PitchShift         Pitch shift transformation.
SpeedPerturbation  Speed perturbation transformer.

Show Transformation Parameters

Run:

audio transform params TRANSFORMATION

For example:

audio transform params PitchShift

Output:

Name             Type    Default    Description
---------------  ------  ---------  --------------------------------------
shift            float              Pitch shift in octaves.
fft_window_size  float   0.1        Short Time FFT window size in seconds.

Transform Audio File

Command format variants:

audio transform file INPUT_PATH OUTPUT_PATH TRANSFORMATION *OPTIONS
audio transform file INPUT_PATH OUTPUT_PATH --config=CONFIG_PATH

For example to specify transformation via CLI args run:

audio transform file path/to/input.opus path/to/output.wav PitchShift --shift=0.5

Output:

2024-08-20 18:07:24,897 INFO Processing file path/to/input.opus -> path/to/output.wav
  5%|█████              | 21.1M/453M [00:00<00:11, 36.4Msamples/s] 

Otherwise, you can specify transformation in a config file. For example if task.yaml contains the following definitions:

transforms:
  - type: PitchShift
    params:
      shift: 0.2
  - type: SpeedPerturbation
    params:
      speed_factor: 0.5

You can run:

audio transform file path/to/input.opus path/to/output.wav --config=task.yaml

The output.wav will have pitch shifted by +0.2 octaves relative to input.opus and will be stretched twice (with no additional significant pitch perturbations).

Transform Dataset

Command format:

audio transform files --config=FILE

Config will have additional attributes:

input_root: "path/to/INPUT/data/root"
input_pattern: "**/*.opus"
output_root: "path/to/OUTPUT/data/root"
output_pattern: "{reldir}/{name}.opus"
transforms:
  - type: PitchShift
    params:
      shift: 0.5
  - type: SpeedPerturbation
    params:
      speed_factor: 0.5
  • input_root is a root directory for input dataset
  • input_pattern is input file path pattern relative to the input_root
  • output_root is a root directory for output files
  • output_pattern output file pattern relative to the output root. It will be recalculated for each input file. You can use curly braces {something} to substitute the corresponding input file path elements. The following elements are supported:
    • {relpath} - full input path relative to the input root
    • {reldir} - input file directory relative to the input root
    • {name} - input file name without extension
    • {ext} - input file extension

Public Datasets

The audio tool supports downloading public STT datasets for testing purpose.

Listing Public Datasets

Run:

audio datasets list

Output:

Name                                   Format    Size      Archive Size
-------------------------------------  --------  --------  --------------
radio_v4_and_public_speech_5percent    opus      65.8 GB   11.4 GB
audiobook_2                            opus      162.0 GB  25.8 GB
radio_2                                opus      154.0 GB  24.6 GB
public_youtube1120                     opus      237.0 GB  19.0 GB
asr_public_phone_calls_2               opus      66.0 GB   9.4 GB
public_youtube1120_hq                  opus      31.0 GB   4.9 GB
asr_public_stories_2                   opus      9.0 GB    1.4 GB
tts_russian_addresses_rhvoice_4voices  opus      80.9 GB   12.9 GB
public_youtube700                      opus      75.0 GB   12.2 GB
asr_public_phone_calls_1               opus      22.7 GB   3.2 GB

Download Public Datasets

Run for example:

audio datasets download public_lecture_1 data/lecture_dataset

Output (intermediate):

2024-08-20 18:27:23,344 INFO     Downloading dataset 'public_lecture_1' (122.5 MB) to data/lecture_dataset
90%|████████████████████████████████   | 110M/123M [00:43<00:15, 3.4Mbytes/s]

Development

The project requires Poetry and Python >= 3.10

Clone:

git clone git@github.com:stepan-anokhin/audio-transformers.git

Then:

cd audio-transformers

Install dependencies:

poetry install

Run tests:

poetry run pytest

The project uses Black code style. Run style check:

poetry run black --check --line-length 120 audio_transformers tests

Run linter:

poetry run flake8 audio_transformers tests --count --max-complexity=10 --max-line-length=120 --statistics

Project Structure

Packages:

  • audio_transformers/core - implementations audio transformations
  • audio_transformers/io - input/output logic (using ffmpegio)
  • audio_transformers/cli - CLI tool implementation
  • audio_transformers/cli/handlers - CLI subcommand handlers
  • audio_transformers/utils - misc utilities
  • tests - unit-tests and integration tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

audio_transformers-1.0.0.tar.gz (21.9 kB view details)

Uploaded Source

Built Distribution

audio_transformers-1.0.0-py3-none-any.whl (33.8 kB view details)

Uploaded Python 3

File details

Details for the file audio_transformers-1.0.0.tar.gz.

File metadata

  • Download URL: audio_transformers-1.0.0.tar.gz
  • Upload date:
  • Size: 21.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.5 Linux/6.5.0-41-generic

File hashes

Hashes for audio_transformers-1.0.0.tar.gz
Algorithm Hash digest
SHA256 89e7f2e8df0d4a9e7d364f5082dc5cbeeb9e0b9234756e684bdd2e02d85a3d06
MD5 da890a07fb70d05db412690855f225af
BLAKE2b-256 ddb568f7447f5929b90af4cb80ecd06c8741603a8c00f7b3cf6651e5e4046194

See more details on using hashes here.

File details

Details for the file audio_transformers-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: audio_transformers-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 33.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.5 Linux/6.5.0-41-generic

File hashes

Hashes for audio_transformers-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a861a0227f68a49601bf16193b2c0bf246490cb6421fb06b6211a7d853cd4c1f
MD5 7958d982517203d99473670aa183f667
BLAKE2b-256 9973e2a2072ecca096baa7ed36e3df427804615d40538e51abe55b1f67e66aa3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page