Skip to main content

This package is written for text-to-audio/music generation.

Project description

AudioSR: Versatile Audio Super-resolution at Scale

arXiv githubio Replicate

Pass your audio in, AudioSR will make it high fidelity!

Work on all types of audio (e.g., music, speech, dog, raining, ...) & all sampling rates.

Share your thoughts/samples/issues in our discord channel: https://discord.gg/HWeBsJryaf

Image Description

Change Log

  • 2023-09-24: Add replicate demo (@nateraw); Fix error on windows, librosa warning etc (@ORI-Muchim).
  • 2023-09-16: Fix DC shift issue. Fix duration padding bug. Update default DDIM steps to 50.

Commandline Usage

Installation

# Optional
conda create -n audiosr python=3.9; conda activate audiosr
# Install AudioLDM
pip3 install audiosr==0.0.7

Usage

Process a list of files. The result will be saved at ./output by default.

audiosr -il batch.lst

Process a single audio file.

audiosr -i example/music.wav

Full usage instruction

> audiosr -h

> usage: audiosr [-h] -i INPUT_AUDIO_FILE [-il INPUT_FILE_LIST] [-s SAVE_PATH] [--model_name {basic,speech}] [-d DEVICE] [--ddim_steps DDIM_STEPS] [-gs GUIDANCE_SCALE] [--seed SEED]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_AUDIO_FILE, --input_audio_file INPUT_AUDIO_FILE
                        Input audio file for audio super resolution
  -il INPUT_FILE_LIST, --input_file_list INPUT_FILE_LIST
                        A file that contains all audio files that need to perform audio super resolution
  -s SAVE_PATH, --save_path SAVE_PATH
                        The path to save model output
  --model_name {basic,speech}
                        The checkpoint you gonna use
  -d DEVICE, --device DEVICE
                        The device for computation. If not specified, the script will automatically choose the device based on your environment.
  --ddim_steps DDIM_STEPS
                        The sampling step for DDIM
  -gs GUIDANCE_SCALE, --guidance_scale GUIDANCE_SCALE
                        Guidance scale (Large => better quality and relavancy to text; Small => better diversity)
  --seed SEED           Change this value (any integer number) will lead to a different generation result.
  --suffix SUFFIX       Suffix for the output file

TODO

"Buy Me A Coffee"

  • Add gradio demo.
  • Optimize the inference speed.

Cite our work

If you find this repo useful, please consider citing:

@article{liu2023audiosr,
  title={{AudioSR}: Versatile Audio Super-resolution at Scale},
  author={Liu, Haohe and Chen, Ke and Tian, Qiao and Wang, Wenwu and Plumbley, Mark D},
  journal={arXiv preprint arXiv:2309.07314},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

audiosr-0.0.7.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

audiosr-0.0.7-py3-none-any.whl (2.9 MB view details)

Uploaded Python 3

File details

Details for the file audiosr-0.0.7.tar.gz.

File metadata

  • Download URL: audiosr-0.0.7.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for audiosr-0.0.7.tar.gz
Algorithm Hash digest
SHA256 6e272a00f6dfbb4ae7b749b8cc6c90f58e0f4aaf2f96ae7b1e5f58ddb8c75803
MD5 39930c0f2f655fe5782219f6ae21d442
BLAKE2b-256 64e578b6385ae7156697a3d04cf7e8fbb894f11ab8a95ebf6dd70bd4f49307ee

See more details on using hashes here.

File details

Details for the file audiosr-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: audiosr-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for audiosr-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 05794f995ab42458216eb302dd9768c1c1e535091ee54e9e09f69a60eaad96e2
MD5 5655d2dc5f26279defb604891a1b665d
BLAKE2b-256 7e12e53ffbe19d52d544ab7bcc4f1e0a691fd6ed5e4dc342ebc5a30fcbe519bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page