Skip to main content

Auger ML predict python and command line interface

Project description

Install

pip install auger.ai.predict

Auger.ai.predict

Auger ML predict Python API and command line interface

Download exported model

To download exported model you can use:

Predict using exported model

  • Unzip file with model
  • Run client.py from model folder:

python <model_path>/client.py --path_to_predict <data_path> --model_path model_path

--path_to_predict - path to file with data to predict. Should contain features used to train model --model_path - folder which contain model.pkl.gz file

For example:

python ./models/export_9BB0BFA3D368454/client.py --path_to_predict ./files/baseball_predict.csv --model_path ./models/export_9BB0BFA3D368454/model

Client.py command line parameters

--path_to_predict Path to file for predict

--model_path Path to folder with model

--threshold Threshold to use for calculate target using predict_proba

--score 0/1 Build scores after prediction if prediction data contain actual target

Auger.ai.predict Python API

auger_ml.model_exporter.ModelExporter

ModelExporter provides interface to Auger predict API.

  • ModelExporter(options) - constructs ModelExporter instance.

    • options - optional parameters. Must be {} for now
  • predict_by_model(model_path, path_to_predict=None, records=None, features=None, threshold=None) - produce prediction based on exported model and data

    • model_path - folder which contain model.pkl.gz file

    • path_to_predict - data to predict

    • records - data to predict: list of lists. path_to_predict should be None in this case. For example: [[0.1,0.2],[0.1, 0.3]]

    • features - feature names for records. Used only when records is not None

    • threshold - set threshold to produce prediction for classification based on probabilities. proba_ column will be added to prediction result for each target class

    • RETURN: predictions - if path_to_predict is not None, then file in same directory with predcitions, or pandas dataframe

    Example:

    def predict_by_model_example(path_to_predict=None, threshold=None, model_path=None):
        #features is an array mapping your data to the feature, your feature and data should be
        #the same that you trained your model with.
        #If it is None, features read from model/options.json file
        #['feature1', 'feature2']
        features = None 
    
        # data is an array of arrays to get predictions for, input your data below
        # each record should contain values for each feature
        records = [[],[]]
    
        if path_to_predict:
            path_to_predict=os.path.abspath(path_to_predict)
    
        predictions = ModelExporter({}).predict_by_model(
            records=records,
            model_path=model_path,
            path_to_predict=path_to_predict,
            features=features,
            threshold=threshold
        )
    
        return predictions
    
  • load_model(model_path) - load model from file.

    • model_path - folder which contain model.pkl.gz file

    • RETURN: model, timeseries_model

      • model - ML model to call predict
      • timeseries_model - flag is this timeseries model or not
  • preprocess_data(model_path, data_path, records=None, features=None) - preprocess data for predict. It will process data same way as train data used for model

    • model_path - folder which contain model.pkl.gz file

    • data_path - data to preprocess

    • records - data to predict: list of lists. data_path should be None in this case. For example: [[0.1,0.2],[0.1, 0.3]]

    • features - feature names for records. Used only when records is not None

    • RETURN: X_test, Y_test, target_categoricals

      • X_test - data to call predict
      • Y_test - array with target values
      • target_categoricals - dict with categories for target, may be used to get actual target values

    Example:

    def predict_by_model_example(path_to_predict=None, model_path=None):
        model_exporter = ModelExporter({})
        model, timeseries_model = model_exporter.load_model(model_path)
        X_test, Y_test, target_categoricals = model_exporter.preprocess_data(model_path, 
            data_path=path_to_predict)
    
        results = model.predict(X_test)
    
        # If your target is categorical you can translate predicted values back to original:
        # target_feature = "target"
        # categories = target_categoricals[target_feature]['categories']
        # results = map(lambda x: categories[int(x)], results)
    

    Example for timeseries data:

    def predict_by_model_timeseries_example(path_to_predict=None, model_path=None):
        model_exporter = ModelExporter({})
        model, timeseries_model = model_exporter.load_model(model_path)
        X_test, Y_test, target_categoricals = model_exporter.preprocess_data(model_path, 
            data_path=path_to_predict)
    
        if timeseries_model:
            results = model.predict((X_test, Y_test, False))[-1:]
        else:
            results = model.predict(X_test.iloc[-1:])
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

auger.ai.predict-1.1.12-py3-none-any.whl (134.5 kB view details)

Uploaded Python 3

File details

Details for the file auger.ai.predict-1.1.12-py3-none-any.whl.

File metadata

File hashes

Hashes for auger.ai.predict-1.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 b6d0520145834104fbf3e2846c6567aa0b7485fd5d6ea7d49e007c54ec3746bc
MD5 c76864473be2a06d7d497cd80b8fdb29
BLAKE2b-256 de5f3b399fc5b92d7b534d95c05c5db362e1cad938b67f8dd0f138519564edb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page