Skip to main content

Augmend

Project description

Augmend

Augmentation library tailored towards the needs of microscopy images analysis.

Augmend

  • provides a simple yet flexible augmentation pipeline without too many bells and whistles
  • supports 2D and 3D images
  • operates on numpy arrays and can interface with keras/tensorflow generators
  • offers optional GPU acceleration for compute intensive augmentions via OpenCL

Please note that this project is still experimental and the API might change anytime.

-

Currently implemented:

  • flips and 90 degree rotations
  • scaling, elastic deformation
  • Gaussian noise, Intensity Shifts

etc...

Installation

pip install augmend

From source:

pip install git+https://github.com/stardist/augmend.git

Usage

Basic augmentation pipeline (single images)

First instantiate an augmentation pipeline class and then populate it with augmentation transforms (e.g. fliprotations, elastic transforms, etc).

from augmend import Augmend           
from augmend import Elastic, FlipRot90, AdditiveNoise

# define augmentation pipeline
aug = Augmend()

# define transforms
aug.add(FlipRot90(axis = (0,1)), probability=1)
aug.add(Elastic(axis = (0,1)),probability=1)
aug.add(AdditiveNoise(sigma = 0.3),probability=1)
#...

Afterwards, it can be applied to an image img by simply calling aug(img)

import numpy as np 
import matplotlib.pyplot as plt 

# input
img = np.zeros((128, 128), np.float32)
img[::16] = 1 

# output
result = aug(img)


plt.subplot(121);plt.title("img");plt.imshow(img)
plt.subplot(122);plt.title("result");plt.imshow(result)

alt text

Simultanously transforming several images

Often, one is given several input images [X,Y,...] that need to be transformed the same way e.g. image/label pairs for supervised learning). To that end, Augmend.add accepts a list of transforms, which then will be applied to each image in the input with the same random seed.

aug.add([FlipRot90(),FlipRot90()], probability=1)

[X2,Y2] = aug([X,Y])

Augmenting in 3D

Should work the same way - in fact, almost all augmentations should accept nD arrays. The axis over which the transformation is applied can be typically set via the axis parameter in the transform object, e.g. FlipRot90(axis = (0,1,2)).

Example:

import numpy as np
from augmend import Augmend, Elastic, FlipRot90

# define augmentation pipeline
aug = Augmend()
aug.add([FlipRot90(axis=(0, 1, 2)),
         FlipRot90(axis=(0, 1, 2))],
        probability=0.9)

aug.add([Elastic(axis=(0, 1, 2), amount=5, order=1),
         Elastic(axis=(0, 1, 2), amount=5, order=0)],
        probability=0.9)

# example 3d image and label
x = np.zeros((100,) * 3, np.float32)
x[-20:, :20, :20] = 1.
x[30:40, -10:] = .8
Xs = np.meshgrid(*((np.arange(0, 100),) * 3), indexing="ij")
R = np.sqrt(np.sum([(X - c) ** 2 for X, c in zip(Xs, (70, 60, 50))], axis=0))
x[R < 20] = 1.4
y = np.zeros((100,) * 3, np.uint16)
y[R < 20] = 200

# resulting volume
res = aug([x, y])

Should result in a similar output like this (From left to right: original and 4 augmented volumes. Top and bottom, image x and labels y).

alt text

Usage with a data generator

In a supervised learning setting, one often constructs a data generator that yeilds batches of array pairs

# a simple data generator (might as well return several arrays, as for a supervised data generator) 
def data_gen():
    for i in range(4):
        yield x_batch, y_batch

Augmend.flow allows to wrap that generator into the augmented one, like so

aug = Augmend()

aug.add([FlipRot90(axis=(1, 2)),
         FlipRot90(axis=(1, 2))],
        probability=0.9)

aug_gen = aug.flow(data_gen)

# get the results as tuple
res = next(aug_gen)

Usage with tensorflow data pipelines

Augmend.tf_map returns a tensorflow function that can be applied to an existing tf.data pipeline via dataset.map():

import numpy as np
import tensorflow as tf
from augmend import Augmend
from augmend.utils import create_test_pattern

y = create_test_pattern(n_samples=16, shape=(512,512), grid_w=(3,10)).astype(np.int16)
x = (y + 50*np.random.normal(0,1,y.shape)).astype(np.float32)

aug = Augmend()
aug.add([Elastic(axis=(0, 1), amount=5, order=1),
         Elastic(axis=(0, 1), amount=5, order=0)])
    
dataset = tf.data.Dataset.from_tensor_slices((x,y))

dataset = dataset.map(aug.tf_map, num_parallel_calls=tf.data.AUTOTUNE)

x2, y2 = next(iter(dataset))

Usage with pytorch Dataset

Augmend.torch_wrap will wrap an existing torch dataset:

from torch.utils.data import TensorDataset

data = TensorDataset(torch.tensor(x),torch.tensor(y))

data = aug.torch_wrap(data)

x2, y2 = data[0]

Transforming arrays on the GPU

Some transforms (e.g. Elastic and Scale) allow to use the GPU for the transformation (which can be a bottleneck) via the keyword use_gpu. This requires additionally the installation of gputools

Available augmentations

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

augmend-0.1.3.tar.gz (1.4 MB view details)

Uploaded Source

File details

Details for the file augmend-0.1.3.tar.gz.

File metadata

  • Download URL: augmend-0.1.3.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for augmend-0.1.3.tar.gz
Algorithm Hash digest
SHA256 ca711d54a58e6930ded1b3d9a36b6690096f9271ee0e1a61ef568ea62bbf3819
MD5 420800beb600652e30bc5fd98f7df659
BLAKE2b-256 d0726b2b943bb7547306c7d2c1d3463b5d6c17cddfcdd8b9b23f841a2120760a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page