Skip to main content

Aurelio Platform SDK

Project description

PyPI - Python Version GitHub Contributors GitHub Last Commit GitHub Repo Size GitHub Issues GitHub Pull Requests Github License

Aurelio SDK

The Aurelio Platform SDK. API references

Installation

To install the Aurelio SDK, use pip or poetry:

pip install aurelio-sdk

Authentication

The SDK requires an API key for authentication. Get key from Aurelio Platform. Set your API key as an environment variable:

export AURELIO_API_KEY=your_api_key_here

Usage

See examples for more details.

Initializing the Client

from aurelio_sdk import AurelioClient
import os

client = AurelioClient(api_key=os.environ["AURELIO_API_KEY"])

or use asynchronous client:

from aurelio_sdk import AsyncAurelioClient

client = AsyncAurelioClient(api_key="your_api_key_here")

Chunk

from aurelio_sdk import ChunkingOptions, ChunkResponse

# All options are optional with default values
chunking_options = ChunkingOptions(
    chunker_type="semantic", max_chunk_length=400, window_size=5
)

response: ChunkResponse = client.chunk(
    content="Your text here to be chunked", processing_options=chunking_options
)

Extracting Text from Files

PDF Files

from aurelio_sdk import ExtractResponse

# From a local file
file_path = "path/to/your/file.pdf"

with open(file_path, "rb") as file:
    response_pdf_file: ExtractResponse = client.extract_file(
        file=file, quality="low", chunk=True, wait=-1, enable_polling=True
    )

Video Files

from aurelio_sdk import ExtractResponse

# From a local file
file_path = "path/to/your/file.mp4"

with open(file_path, "rb") as file:
    response_video_file: ExtractResponse = client.extract_file(
        file=file, quality="low", chunk=True, wait=-1, enable_polling=True
    )

Extracting Text from URLs

PDF URLs

from aurelio_sdk import ExtractResponse

# From URL
url = "https://arxiv.org/pdf/2408.15291"
response_pdf_url: ExtractResponse = client.extract_url(
    url=url, quality="low", chunk=True, wait=-1, enable_polling=True
)

Video URLs

from aurelio_sdk import ExtractResponse

# From URL
url = "https://storage.googleapis.com/gtv-videos-bucket/sample/ForBiggerMeltdowns.mp4"
response_video_url: ExtractResponse = client.extract_url(
    url=url, quality="low", chunk=True, wait=-1, enable_polling=True
)

Waiting for completion and checking document atatus

# Set timeout for large files with `high` quality
# Timeout is set to 10 seconds
response_pdf_url: ExtractResponse = client.extract_url(
    url="https://arxiv.org/pdf/2408.15291", quality="high", chunk=True, wait=10
)

# Get document status and response
document_response: ExtractResponse = client.get_document(
    document_id=response_pdf_file.document.id
)
print("Status:", document_response.status)

# Use a pre-built function, which helps to avoid long hanging requests (Recommended)
document_response = client.wait_for(
    document_id=response_pdf_file.document.id, wait=300
)

Embeddings

from aurelio_sdk import EmbeddingResponse

response: EmbeddingResponse = client.embedding(
    input="Your text here to be embedded",
    model="bm25")

# Or with a list of texts
response: EmbeddingResponse = client.embedding(
    input=["Your text here to be embedded", "Your text here to be embedded"]
)

Response Structure

The ExtractResponse object contains the following key information:

  • status: The current status of the extraction task
  • usage: Information about token usage, pages processed, and processing time
  • message: Any relevant messages about the extraction process
  • document: The extracted document information, including its ID
  • chunks: The extracted text, divided into chunks if chunking was enabled

The EmbeddingResponse object contains the following key information:

  • message: Any relevant messages about the embedding process
  • model: The model name used for embedding
  • usage: Information about token usage, pages processed, and processing time
  • data: The embedded documents

Best Practices

  1. Use appropriate wait times based on your use case and file sizes.
  2. Use async client for better performance.
  3. For large files or when processing might take longer, enable polling for long-hanging requests.
  4. Always handle potential exceptions and check the status of the response.
  5. Adjust the quality parameter based on your needs. "low" is faster but less accurate, while "high" is slower but more accurate.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aurelio_sdk-0.0.6.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

aurelio_sdk-0.0.6-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file aurelio_sdk-0.0.6.tar.gz.

File metadata

  • Download URL: aurelio_sdk-0.0.6.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.12.6 Linux/6.8.0-1014-azure

File hashes

Hashes for aurelio_sdk-0.0.6.tar.gz
Algorithm Hash digest
SHA256 6d9037184665ab1cbc0a00a2c5dd5b86e29d877400cd08cb50d66a88c66e4900
MD5 734d71fa09116f9ba13a70b9a72be263
BLAKE2b-256 2143746ebecaae090aee8cc3500b85ff0714450b09510085beae57249fcd0f5a

See more details on using hashes here.

File details

Details for the file aurelio_sdk-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: aurelio_sdk-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 13.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.12.6 Linux/6.8.0-1014-azure

File hashes

Hashes for aurelio_sdk-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 5c43bdd89a46b1e4d4f724d08334b02dc2481df221d073f7caefe497bf59037b
MD5 3b872b39b6036b5edfaf055866cedb7d
BLAKE2b-256 001674dc829d2b7e7b8c2742ccd037e64e4f74df754801068c3545900f0663df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page