Skip to main content

A neural network for structure parameter determination

Project description

Auriga

Auriga neural net predicts age, extinction, and distance to stellar populations

Installation:

pip install auriga (requires Python3)

Keywords:

positional arguments:
  tableIn               Input table with Gaia DR2 source ids and cluster ids

optional arguments:
  -h, --help            show this help message and exit
  --tutorial            Use included test.fits or test.csv files as inputs
  --tableOut TABLEOUT   Prefix of the csv file into which the cluster properties should be written, default tableIn-out
  --iters ITERS         Number of iterations of each cluster is passed through Auriga to generate the errors, default 10
  --localFlux           Download necessary flux from Gaia archive for all source ids, default True
  --saveFlux SAVEFLUX   If downloading flux, prefix of file where to save it, default empty
  --silent              Suppress print statements, default False
  --cluster CLUSTER     Column with cluster membership
  --source_id SOURCE_ID
                        Column with Gaia DR2 source id,
  --gaiaFluxErrors      If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True
  --g G                 If loading flux, column for G magnitude
  --bp BP               If loading flux, column for BP magnitude
  --rp RP               If loading flux, column for RP magnitude
  --j J                 If loading flux, column for J magnitude
  --h H                 If loading flux, column for H magnitude
  --k K                 If loading flux, column for K magnitude
  --parallax PARALLAX   If loading flux, column for parallax
  --eg EG               If loading flux, column for uncertainty in G magnitude
  --ebp EBP             If loading flux, column for uncertainty in BP magnitude
  --erp ERP             If loading flux, column for uncertainty in RP magnitude
  --ej EJ               If loading flux, column for uncertainty in J magnitude
  --eh EH               If loading flux, column for uncertainty in H magnitude
  --ek EK               If loading flux, column for uncertainty in K magnitude
  --eparallax EPARALLAX
                        If loading flux, column for uncertainty in parallax
  --gf GF               If uncertainties have not been converted to magnitudes, column for G flux
  --bpf BPF             If uncertainties have not been converted to magnitudes, column for BP flux
  --rpf RPF             If uncertainties have not been converted to magnitudes, column for RP flux
  --egf EGF             If uncertainties have not been converted to magnitudes, column for uncertainty in G flux
  --ebpf EBPF           If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux
  --erpf ERPF           If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux
  --memoryOnly          Store table only in memory without saving to disk
  --ver VER             Version of Gaia data to download, default DR3

Examples:

Downloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs

auriga test.fits --tableOut test-out --saveFlux test --tutorial 

Using previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters

auriga test.csv --localFlux --iters=20 --tutorial

Using previously downloaded fluxes, defining all the necessary columns

auriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \
           --rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \
           --ek ks_msigcom --eparallax parallax_error --tutorial --silent

Using from within a code, outside of a command line

from auriga.auriga import getClusterAge
t=Table.read('test.csv')
out=getClusterAge(t,localFlux=True)
out=getClusterAge('test.csv',tutorial=True,memoryOnly=True)

Required packages:

  • Astropy
  • Astroquery
  • Pytorch
  • Pandas

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Auriga-1.1.tar.gz (2.7 MB view details)

Uploaded Source

Built Distribution

Auriga-1.1-py3-none-any.whl (2.7 MB view details)

Uploaded Python 3

File details

Details for the file Auriga-1.1.tar.gz.

File metadata

  • Download URL: Auriga-1.1.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for Auriga-1.1.tar.gz
Algorithm Hash digest
SHA256 853eb962bd54f7c07a0e524a273d3c40dca537513b293dbb6b6f7e58394c969d
MD5 e75d1f086eabae45343eb593b48f1eda
BLAKE2b-256 76238232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244

See more details on using hashes here.

File details

Details for the file Auriga-1.1-py3-none-any.whl.

File metadata

  • Download URL: Auriga-1.1-py3-none-any.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for Auriga-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f348fab1d35398210de4996c277e5ea4e443eb0bbccf880fb9010b5520b6ecc2
MD5 26a81abb7d336297684dc675a8acda93
BLAKE2b-256 e46135018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page