Data Curation in Polaris
Project description
Auroris
Tools for data curation in the Polaris ecosystem.
Getting started
from auroris.curation import Curator
from auroris.curation.actions import MoleculeCuration, OutlierDetection, Discretization
# Define the curation workflow
curator = Curator(
steps=[
MoleculeCuration(input_column="smiles"),
OutlierDetection(method="zscore", columns=["SOL"]),
Discretization(input_column="SOL", thresholds=[-3]),
],
parallelized_kwargs = { "n_jobs": -1 }
)
# Run the curation
dataset, report = curator(dataset)
Run curation with command line
A Curator
object is serializable, so you can save it to and load it from a JSON file to reproduce the curation.
auroris [config_file] [destination] --dataset-path [data_path]
Documentation
Please refer to the documentation, which contains tutorials for getting started with auroris
and detailed descriptions of the functions provided.
Installation
You can install auroris
using conda/mamba/micromamba:
conda install -c conda-forge auroris
You can also use pip:
pip install auroris
Development lifecycle
Setup dev environment
conda env create -n auroris -f env.yml
conda activate auroris
pip install --no-deps -e .
Other installation options
Alternatively, using [uv](https://github.com/astral-sh/uv):
```shell
uv venv -p 3.12 auroris
source .venv/auroris/bin/activate
uv pip compile pyproject.toml -o requirements.txt --all-extras
uv pip install -r requirements.txt
```
Tests
You can run tests locally with:
pytest
License
Under the Apache-2.0 license. See LICENSE.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
auroris-0.1.3.tar.gz
(96.0 kB
view details)
Built Distribution
auroris-0.1.3-py3-none-any.whl
(34.5 kB
view details)
File details
Details for the file auroris-0.1.3.tar.gz
.
File metadata
- Download URL: auroris-0.1.3.tar.gz
- Upload date:
- Size: 96.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b38ab4c16c328e25af5c15c177c009ebc867dc436318b3e7004b55417086df25 |
|
MD5 | aeec983f3f06cfc50e29cd3f8d5e50ed |
|
BLAKE2b-256 | ff928fe812a1307a0e349d48f4952b49cfc2b1f81a02fa8cf1fcb942510fc2b6 |
File details
Details for the file auroris-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: auroris-0.1.3-py3-none-any.whl
- Upload date:
- Size: 34.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa62374f281d6b8b07f3c677ac4fc8ed5d44d92711f088080b4a4c7ca20146b2 |
|
MD5 | 2e872f235ab082edd78b160d0b7e60b1 |
|
BLAKE2b-256 | 0d710dd9e6545b3135c9c8dc903354ddacb91fe23b8bb09d535421cd6bee2df1 |