Data Curation in Polaris
Project description
Auroris
Tools for data curation in the Polaris ecosystem.
Getting started
from auroris.curation import Curator
from auroris.curation.actions import MoleculeCuration, OutlierDetection, Discretization
# Define the curation workflow
curator = Curator(
steps=[
MoleculeCuration(input_column="smiles"),
OutlierDetection(method="zscore", columns=["SOL"]),
Discretization(input_column="SOL", thresholds=[-3]),
],
parallelized_kwargs = { "n_jobs": -1 }
)
# Run the curation
dataset, report = curator(dataset)
Run curation with command line
A Curator
object is serializable, so you can save it to and load it from a JSON file to reproduce the curation.
auroris [config_file] [destination] --dataset-path [data_path]
Documentation
Please refer to the documentation, which contains tutorials for getting started with auroris
and detailed descriptions of the functions provided.
Installation
You can install auroris
using conda/mamba/micromamba:
conda install -c conda-forge auroris
You can also use pip:
pip install auroris
Development lifecycle
Setup dev environment
conda env create -n auroris -f env.yml
conda activate auroris
pip install --no-deps -e .
Other installation options
Alternatively, using [uv](https://github.com/astral-sh/uv):
```shell
uv venv -p 3.12 auroris
source .venv/auroris/bin/activate
uv pip compile pyproject.toml -o requirements.txt --all-extras
uv pip install -r requirements.txt
```
Tests
You can run tests locally with:
pytest
License
Under the Apache-2.0 license. See LICENSE.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
auroris-0.1.4.tar.gz
(96.0 kB
view details)
Built Distribution
auroris-0.1.4-py3-none-any.whl
(34.7 kB
view details)
File details
Details for the file auroris-0.1.4.tar.gz
.
File metadata
- Download URL: auroris-0.1.4.tar.gz
- Upload date:
- Size: 96.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22003c307c9f5cbfc0ea3a0e7203e6df24f3cc508094d3328f9cb863205d027d |
|
MD5 | 313b32c1a32474afe91a0f73bb4ef3d3 |
|
BLAKE2b-256 | 3608551512f842f2e4b158bc6989ddbd764424f15bc417964990248b832cbb87 |
File details
Details for the file auroris-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: auroris-0.1.4-py3-none-any.whl
- Upload date:
- Size: 34.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e8d3d30cdbc47cece3e9b839cb3a3c33a9fe1e3f0a15b61ca75b1d83aef9e56d |
|
MD5 | 7363a3b21061215ba8f0218afcd78f4e |
|
BLAKE2b-256 | fff247e185f228feeffa9e74017dc33690e2268a0603eb7f66073c53e64e4afe |