Data Curation in Polaris
Project description
Auroris
Tools for data curation in the Polaris ecosystem.
Getting started
from auroris.curation import Curator
from auroris.curation.actions import MoleculeCuration, OutlierDetection, Discretization
# Define the curation workflow
curator = Curator(
steps=[
MoleculeCuration(input_column="smiles"),
OutlierDetection(method="zscore", columns=["SOL"]),
Discretization(input_column="SOL", thresholds=[-3]),
],
parallelized_kwargs = { "n_jobs": -1 }
)
# Run the curation
dataset, report = curator(dataset)
Run curation with command line
A Curator
object is serializable, so you can save it to and load it from a JSON file to reproduce the curation.
auroris [config_file] [destination] --dataset-path [data_path]
Documentation
Please refer to the documentation, which contains tutorials for getting started with auroris
and detailed descriptions of the functions provided.
Installation
You can install auroris
using conda/mamba/micromamba:
conda install -c conda-forge auroris
You can also use pip:
pip install auroris
Development lifecycle
Setup dev environment
conda env create -n auroris -f env.yml
conda activate auroris
pip install --no-deps -e .
Other installation options
Alternatively, using [uv](https://github.com/astral-sh/uv):
```shell
uv venv -p 3.12 auroris
source .venv/auroris/bin/activate
uv pip compile pyproject.toml -o requirements.txt --all-extras
uv pip install -r requirements.txt
```
Tests
You can run tests locally with:
pytest
License
Under the Apache-2.0 license. See LICENSE.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
auroris-0.1.5.tar.gz
(96.2 kB
view details)
Built Distribution
auroris-0.1.5-py3-none-any.whl
(34.7 kB
view details)
File details
Details for the file auroris-0.1.5.tar.gz
.
File metadata
- Download URL: auroris-0.1.5.tar.gz
- Upload date:
- Size: 96.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02098456ed9f774469f90ad21347d5ddaeeb53b50d88488fd090037365831aab |
|
MD5 | 3a6334b031f37277b0ade73416d1efbb |
|
BLAKE2b-256 | 887b2c1a66464f7f9e832e377b936fcc4c263caec3d7039b087727851eb27abd |
File details
Details for the file auroris-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: auroris-0.1.5-py3-none-any.whl
- Upload date:
- Size: 34.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e5ccece84dafc80b5728b9318a153b54d3576f7497a4dc7faaf8e6f50196157 |
|
MD5 | e9cf043c3f5172d7cb3b35ad47db24fd |
|
BLAKE2b-256 | 610cc7b1d5bd36a79f0d2c4bc223541dcf6815e2d40fd0f72cce2f0e22cb61d1 |