Skip to main content

Access historical weather data in Australia

Project description

ausweather

Download Australian weather data from the Bureau of Meteorology via SILO using Python

Installation

Install from the command line:

python -m pip install -U ausweather

Example of how to use

In a Python interpreter session:

>>> import ausweather

To use this package to download annual rainfall data for Kent Town, first you need to find the station number using the BoM Weather Station Directory. Then you can use the fetch_bom_station_from_silo(station_number, email_address) function to return a dictionary:

>>> data = ausweather.fetch_bom_station_from_silo(23090, 'kinverarity@hotmail.com')
station #: 23090 name: ADELAIDE (KENT TOWN) title: 23090 ADELAIDE (KENT TOWN) (fetched from SILO on 2020-03-04 16:23:26.395696)
>>> data.keys()
dict_keys(['silo_returned', 'station_no', 'station_name', 'title', 'df', 'annual', 'srn'])

The data is stored in this dictionary under the key "df":

>>> data['df'].info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25677 entries, 1 to 25677
Data columns (total 28 columns):
Date       25677 non-null datetime64[ns]
Day        25677 non-null int32
Date2      25677 non-null object
T.Max      25677 non-null float64
Smx        25677 non-null int32
T.Min      25677 non-null float64
Smn        25677 non-null int32
Rain       25677 non-null float64
Srn        25677 non-null int32
Evap       25677 non-null float64
Sev        25677 non-null object
Radn       25677 non-null float64
Ssl        25677 non-null int32
VP         25677 non-null float64
Svp        25677 non-null int32
RHmaxT     25677 non-null float64
RHminT     25677 non-null float64
FAO56      25677 non-null float64
Mlake      25677 non-null float64
Mpot       25677 non-null float64
Mact       25677 non-null float64
Mwet       25677 non-null float64
Span       25677 non-null float64
Ssp        25677 non-null int32
EvSp       25677 non-null float64
Ses        25677 non-null int32
MSLPres    25677 non-null float64
Sp         25677 non-null int32
dtypes: datetime64[ns](1), float64(16), int32(9), object(2)
memory usage: 4.6+ MB

To see annual rainfall, you can group-by the dt.year accessor of the "Date" column:

>>> df = data["df"]
>>> df.groupby(df.Date.dt.year).Rain.sum()
Date
1950    426.9
1951    677.9
1952    584.9
1953    601.0
1954    439.6
        ...  
2016    820.8
2017    536.2
2018    429.8
2019    376.3
2020    101.6
Name: Rain, Length: 71, dtype: float64

License

Released under the MIT License.

Version history

Version 0.2.1 (3 Mar 2020)

  • Fix bug for whitespace in BoM station name

Version 0.2.0 (3 Mar 2020)

  • Update, many changes.

Version 0.1.0 (11 Feb 2020)

  • Initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ausweather-0.5.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

ausweather-0.5-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file ausweather-0.5.tar.gz.

File metadata

  • Download URL: ausweather-0.5.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for ausweather-0.5.tar.gz
Algorithm Hash digest
SHA256 49e87490df2c2526ca3f9e78df3abd36361057589eeea03e48127f4f4a0ebd74
MD5 0c2b05199414306fab593d939ac0ecdd
BLAKE2b-256 1c56bb75027451c83afa50262dd2d7c70369cd7a21697c2653caace99085f144

See more details on using hashes here.

File details

Details for the file ausweather-0.5-py3-none-any.whl.

File metadata

  • Download URL: ausweather-0.5-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for ausweather-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 56e7441c9d945efd16778993b93b8a80c0750b5bd98b82e4d4548682fc7bf93b
MD5 503acb9a7f3d35c9dec4004ba2a23b99
BLAKE2b-256 50a0e365877648d4420bbfc7d2a52781056da155d680a6f141d8a476a3cf7318

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page