Skip to main content

auto_face_recognition is Tensorflow based python library for fast face recognition

Project description

auto_face_recognition

Last Upadted: 19 November, 2020

  1. What is auto_face_recognition?
  2. Prerequisite
  3. Getting Started- How to use it?
  4. Future?

1. What is auto_face_recognition?

It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training.

2. Prerequisite-

  • To use it only Python (> 3.6) is required.
  • Recommended Python < 3.9

3. Getting Started (How to use it)-

Install the latest version-

pip install auto_face_recognition

It will install all the required package automatically, including Tensorflow Latest.

Usage and Features-

After installing the library you can import the module-

  1. Object Creation-

    import auto_face_recognition
    obj = auto_face_recognition.AutoFaceRecognition()
    
  2. Dataset Creation-

     obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',  
     	    	                  eyecascade_path='haarcascade/haarcascade_eye.xml') 
    

    Note: You need to pass the 'haarcascade_frontalface_default.xml' and 'haarcascade_eye.xml' path.

  3. Model Training-

     obj.face_recognition_train()		
    
  4. Predict Faces-

     # Real Time
     obj.predict_faces()
     # Single Face Recofnition
     obj.predict_face()
    

Parameters You Can Choose-

datasetcreate

datasetcreate(dataset_path='datasets', class_name='Demo',  
                  haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',  
                  eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False,  
                  save_face_only=True, no_of_samples=100,  
                  width=128, height=128, color_mode=False)
""""                  
Dataset Create by face detection  
:param dataset_path: str (example: 'folder_of_dataset')
:param class_name: str (example: 'folder_of_dataset')
:param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)
:param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True)
:param save_face_only: bool (example:True)
:param no_of_samples: int (example: 100)
:param width: int (example: 128)
:param height: int (example: 128)
:param color_mode: bool (example:False):return: None
"""  

face_recognition_train

face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False):  
 """  
 Train TF Keras model according to dataset path  
 :param data_dir: str (example: 'folder_of_dataset')  
 :param batch_size: int (example:32)  
 :param img_height: int (example:128)  
 :param img_width: int (example:128)  
 :param epochs: int (example:10)  
 :param model_path: str (example: 'model')  
 :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3')
 :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer))
 :return: None  
 """

predict_faces

predict_faces(self, class_name=None, img_height=128, img_width=128,  
              haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',  
              eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model',  
              color_mode=False):  
 """  
 Predict Face  
 :param class_name: Type-List (example: ['class1', 'class2'] )  
 :param img_height: int (example:128)  
 :param img_width: int (example:128)  
 :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)  
 :param eyecascade_path: str (example: 'haarcascade_eye.xml)  
 :param model_path: str (example: 'model')  
 :param color_mode: bool (example: False)  
 :return: None  
 """

predict_face

predict_face(self, class_name=None, img_height=128, img_width=128,  
                 haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',  
                 eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model',  
                 color_mode=False, image_path='tmp.png'):  
  """  
  Predict Face  
 :param class_name: Type-List (example: ['class1', 'class2'] )  
 :param img_height: int (example:128)  
 :param img_width: int (example:128)  
 :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)  
 :param eyecascade_path: str (example: 'haarcascade_eye.xml)  
 :param model_path: str (example: 'model')  
 :param color_mode: bool (example: False)  
 :param image_path: str (example: 'src/image_predict.png'  
 :return: None  
 """

4. Future?

Finetuning with Resnet and others.
You Suggest.

Like my work?

Start the project and subscribe me on YouTube. https://www.youtube.com/dipeshpal17

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

auto_face_recognition-0.0.3.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

auto_face_recognition-0.0.3-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file auto_face_recognition-0.0.3.tar.gz.

File metadata

  • Download URL: auto_face_recognition-0.0.3.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for auto_face_recognition-0.0.3.tar.gz
Algorithm Hash digest
SHA256 38482606b9202b781db83d38260a5d9bbb5a70d6c9b547272f4083b95783c2d6
MD5 c9459a7fe4f0d4848d65a6bb870eb401
BLAKE2b-256 ce80b2bfb193f9adc38f8b60995d2c23f4746a72c2f46e33e153c31a37e5680a

See more details on using hashes here.

File details

Details for the file auto_face_recognition-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: auto_face_recognition-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for auto_face_recognition-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 df6ff27db06c1232bceb0f03eb471cbf104b10f1cb4c6cabcb948f4eec56c13d
MD5 0d8a9f54c510632df8a1b602d07f6c21
BLAKE2b-256 c99a68e57a65018b758e274aed7f0c48808433bd792b73102b516d4f3abb3be5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page