auto_face_recognition is Tensorflow based python library for fast face recognition
Project description
auto_face_recognition
Last Upadted: 19 November, 2020
- What is auto_face_recognition?
- Prerequisite
- Getting Started- How to use it?
- Future?
1. What is auto_face_recognition?
It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training.
2. Prerequisite-
- To use it only Python (> 3.6) is required.
- Recommended Python < 3.9
3. Getting Started (How to use it)-
Install the latest version-
pip install auto_face_recognition
It will install all the required package automatically, including Tensorflow Latest.
Usage and Features-
After installing the library you can import the module-
-
Object Creation-
import auto_face_recognition obj = auto_face_recognition.AutoFaceRecognition()
-
Dataset Creation-
obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml')
Note: You need to pass the 'haarcascade_frontalface_default.xml' and 'haarcascade_eye.xml' path.
-
Model Training-
obj.face_recognition_train()
-
Predict Faces-
# Real Time obj.predict_faces() # Single Face Recofnition obj.predict_face()
Parameters You Can Choose-
datasetcreate
datasetcreate(dataset_path='datasets', class_name='Demo',
haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',
eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False,
save_face_only=True, no_of_samples=100,
width=128, height=128, color_mode=False)
""""
Dataset Create by face detection
:param dataset_path: str (example: 'folder_of_dataset')
:param class_name: str (example: 'folder_of_dataset')
:param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)
:param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True)
:param save_face_only: bool (example:True)
:param no_of_samples: int (example: 100)
:param width: int (example: 128)
:param height: int (example: 128)
:param color_mode: bool (example:False):return: None
"""
face_recognition_train
face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False):
"""
Train TF Keras model according to dataset path
:param data_dir: str (example: 'folder_of_dataset')
:param batch_size: int (example:32)
:param img_height: int (example:128)
:param img_width: int (example:128)
:param epochs: int (example:10)
:param model_path: str (example: 'model')
:param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3')
:param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer))
:return: None
"""
predict_faces
predict_faces(self, class_name=None, img_height=128, img_width=128,
haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',
eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model',
color_mode=False):
"""
Predict Face
:param class_name: Type-List (example: ['class1', 'class2'] )
:param img_height: int (example:128)
:param img_width: int (example:128)
:param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)
:param eyecascade_path: str (example: 'haarcascade_eye.xml)
:param model_path: str (example: 'model')
:param color_mode: bool (example: False)
:return: None
"""
predict_face
predict_face(self, class_name=None, img_height=128, img_width=128,
haarcascade_path='haarcascade/haarcascade_frontalface_default.xml',
eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model',
color_mode=False, image_path='tmp.png'):
"""
Predict Face
:param class_name: Type-List (example: ['class1', 'class2'] )
:param img_height: int (example:128)
:param img_width: int (example:128)
:param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml)
:param eyecascade_path: str (example: 'haarcascade_eye.xml)
:param model_path: str (example: 'model')
:param color_mode: bool (example: False)
:param image_path: str (example: 'src/image_predict.png'
:return: None
"""
4. Future?
Finetuning with Resnet and others.
You Suggest.
Like my work?
Start the project and subscribe me on YouTube. https://www.youtube.com/dipeshpal17
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file auto_face_recognition-0.0.3.tar.gz
.
File metadata
- Download URL: auto_face_recognition-0.0.3.tar.gz
- Upload date:
- Size: 8.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38482606b9202b781db83d38260a5d9bbb5a70d6c9b547272f4083b95783c2d6 |
|
MD5 | c9459a7fe4f0d4848d65a6bb870eb401 |
|
BLAKE2b-256 | ce80b2bfb193f9adc38f8b60995d2c23f4746a72c2f46e33e153c31a37e5680a |
File details
Details for the file auto_face_recognition-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: auto_face_recognition-0.0.3-py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df6ff27db06c1232bceb0f03eb471cbf104b10f1cb4c6cabcb948f4eec56c13d |
|
MD5 | 0d8a9f54c510632df8a1b602d07f6c21 |
|
BLAKE2b-256 | c99a68e57a65018b758e274aed7f0c48808433bd792b73102b516d4f3abb3be5 |