A realtime timer for profiling a Python function or snippet.
Project description
auto_profiler
A realtime timer for profiling a Python function or snippet.
Features
- Filtering external libraries profiling.
- Filtering very short time functions-> threshold
- Allow depth: you can easily find the time consuming function
- Allow loop or multiple function call
- Allow recursive function call
- Disable it globaly by Profiler.GlobalDisable=True to save time :)
Installation
Release version:
$ pip install auto_profiler
Development version:
$ pip install -e git+https://github.com/modaresimr/auto_profiler.git#egg=auto_profiler
Install in Jupyter
$ pip install ipytree
$ jupyter nbextension enable --py --sys-prefix ipytree
Quick start
Auto profiling
More commonly, chances are that we want to measure the execution time of an entry function and all its subfunctions. In this case, it's too tedious to do it manually, and we can leverage Profiler
to inject all the timing points for us automatically:
import time # line number 1
import random
from auto_profiler import Profiler, Tree
def f1():
mysleep(.6+random.random())
def mysleep(t):
time.sleep(t)
def fact(i):
f1()
if(i==1):
return 1
return i*fact(i-1)
@Profiler()
def main():
for i in range(5):
f1()
fact(3)
if __name__ == '__main__':
main()
Example Output
In Jupyter
Time [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974] main [auto-profiler/profiler.py:267] [/test/t2.py:30]
├── 5.954s [5 * 1.191] f1 [/test/t2.py:34] [/test/t2.py:14]
│ └── 5.954s [5 * 1.191] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 5.954s [5 * 1.191] <time.sleep>
|
|
| # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020] fact [/test/t2.py:36] [/test/t2.py:20]
├── 0.849s [1 * 0.849] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 0.849s [1 * 0.849] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 0.849s [1 * 0.849] <time.sleep>
└── 2.171s [1 * 2.171] fact [/test/t2.py:24] [/test/t2.py:20]
├── 1.552s [1 * 1.552] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 1.552s [1 * 1.552] mysleep [/test/t2.py:15] [/test/t2.py:17]
└── 0.619s [1 * 0.619] fact [/test/t2.py:24] [/test/t2.py:20]
└── 0.619s [1 * 0.619] f1 [/test/t2.py:21] [/test/t2.py:14]
Manual profiling
Sometimes, we only want to measure the execution time of partial snippets or a few functions, then we can inject all timing points into our code manually by leveraging Timer
:
# manual_example.py
import time
from auto_profiler import Timer, Tree
def main():
t = Timer('sleep1', parent_name='main').start()
time.sleep(1)
t.stop()
t = Timer('sleep2', parent_name='main').start()
time.sleep(1.5)
t.stop()
print(Tree(Timer.root))
if __name__ == '__main__':
main()
Run the example code:
$ python manual_example.py
and it will show you the profiling result:
2.503s main
├── 1.001s sleep1
└── 1.501s sleep2
advanced setup
def show(p):
print('Time [Hits * PerHit] Function name [Called from] [Function Location]\n'+\
'-----------------------------------------------------------------------')
print(Tree(p.root, threshold=0.5))
@Profiler(depth=4, on_disable=show)
def main():
for i in range(5):
f1()
fact(3)
Supported frameworks
While you can do profiling on normal Python code, as a web developer, chances are that you will usually do profiling on web service code.
Currently supported web frameworks:
Examples
For profiling web service code (involving web requests), check out examples.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file auto_profiler-2.0.tar.gz
.
File metadata
- Download URL: auto_profiler-2.0.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 985bf3cb28b3fb130bae94fc4de71f3e9da987eac65ffc9c2bdc9018650d3323 |
|
MD5 | b6914e376b9874bd833bc97c68688f3b |
|
BLAKE2b-256 | 1d66aeed1b46280650e6c380e5b3b5c1e2de795687892f5654690938cd949c93 |
Provenance
File details
Details for the file auto_profiler-2.0-py3-none-any.whl
.
File metadata
- Download URL: auto_profiler-2.0-py3-none-any.whl
- Upload date:
- Size: 12.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 131305f8190a7ec476cfaa7a585fa6441cfc240328c2806837409155040e2e6c |
|
MD5 | c1b956ce158e5b836cc6de165b84f6ea |
|
BLAKE2b-256 | d0ff37e6a7b3aa6e547f0e9ff54c73350ba1d46816a4f5f558a52dc0e2d6ab86 |