Skip to main content

Auto Ensemble using Prophet and NeurlaProphet

Project description

Dependencies

Make sure you have install the fbprophet and NeuralProphet

fbprophet version == 0.7.1

Steps to install fbprophet

conda env -n test_env python==3.8.5
conda install -c anaconda ephem
conda install -c conda-forge pystan
conda install -c conda-forge fbprophet

if error degrade to pystan==2.19.1.1

###Steps to install NeuralProphet

pip install neuralprophet ==0.3.0

#import

from auto_ts_ensemble_rupakbob import auto_ts_ensemble

#call the package function 1

results = auto_ts_ensemble.neural_analysis(data,freq="H")

###access the model

neural_prophet = results[0]

###access the metrics

metrics = results[1]

###access the predictions

predictions = results[2]

####plot the components

neural_prophet.plot_components(predictions)

#call the package function 2

results2 = auto_ts_ensemble.ts_analysis(data,n_future=7)

#access the model

ts_model = results2[0]

#access the predictions

predictions2 = results2[1]

#plot the components

ts_model.plot_components(predictions2)

#call the package function 3 ensemble

ensemble_predictions = auto_ts_ensemble.ensemble_analysis(predictions,predictions2)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

auto_ts_ensemble-0.0.6.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

auto_ts_ensemble-0.0.6-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file auto_ts_ensemble-0.0.6.tar.gz.

File metadata

  • Download URL: auto_ts_ensemble-0.0.6.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for auto_ts_ensemble-0.0.6.tar.gz
Algorithm Hash digest
SHA256 794c810df5db3417e3eaa0f9a76b20433acffd689a71a2edcd1951aba583cd99
MD5 58140425ee91177ddbc77413747913f4
BLAKE2b-256 63f056042a21748c2546834dd480289c7b12d873d1aba6a770e04c279cb17e9d

See more details on using hashes here.

File details

Details for the file auto_ts_ensemble-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: auto_ts_ensemble-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for auto_ts_ensemble-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 743783f31c8d97e11db0d5a6c12687e505cce04d4f6fdfddcd0c6ca6c9ba3ec4
MD5 5bb09539aed5364d68e7de2b54183dbe
BLAKE2b-256 7ff87abd6f5215a286373fdb7e277a711bfc3e399e6e0461e6758476070de296

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page