Skip to main content

A library of transformers to support portable representations of AutoAI TimeSeries pipelines.

Project description

autoai_ts_libs

A library of transformers to support portable representations of AutoAI TimeSeries pipelines.

1️⃣ -- Pre-contribution requirements

Run on your local machine to install pre-commit package:

brew install pre-commit

and in autoai directory apply the requirements set by .pre-commit-config.yaml file:

pre-commit autoupdate && \
pre-commit install

2️⃣ -- Submitting PR's

During creation of a PR its author should follow Conventional Commits rules (see: https://www.conventionalcommits.org/), however scope currently is not supported.

Correct format of a PR title:

[#github-issue-id]: where type is one of following:

  • feat - introduces a new feature
  • fix - fixes a bug
  • chore - changes that do not modify the source code or test files, like tweaking the build process or adding dependencies
  • docs - changes in documentation only
  • style - code changes that do not impact the functionality
  • refactor - code changes that neither fix a bug nor introduce a feature, typically improving code readability or structure
  • perf - code changes that improve performance
  • test - addition of missing tests or corrections to existing tests

3️⃣ -- License

This library is delivered under the International License Agreement for Non-Warranted Programs (see LICENSE.txt).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

autoai_ts_libs-4.0.16-cp311-cp311-win_amd64.whl (23.2 MB view details)

Uploaded CPython 3.11Windows x86-64

autoai_ts_libs-4.0.16-cp311-cp311-manylinux2014_s390x.whl (27.7 MB view details)

Uploaded CPython 3.11

autoai_ts_libs-4.0.16-cp311-cp311-manylinux1_x86_64.whl (29.4 MB view details)

Uploaded CPython 3.11

autoai_ts_libs-4.0.16-cp311-cp311-macosx_10_9_x86_64.whl (26.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

File details

Details for the file autoai_ts_libs-4.0.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for autoai_ts_libs-4.0.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d7751bfd321d93d89b977c3ccdebff67a21653123cc549a7445debf0557c4dba
MD5 eb398e5b6a938c31128156c98384814e
BLAKE2b-256 92156b949c2965a4b879a05978aea2c89fb339a3e92e95712ad59782063ad7b6

See more details on using hashes here.

File details

Details for the file autoai_ts_libs-4.0.16-cp311-cp311-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for autoai_ts_libs-4.0.16-cp311-cp311-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ea9693ad5f596c2299bafdf745ea57f73eed7693792e8f7ee86a8884349b910f
MD5 55e65b9add2cf9c3a86b0000c0051ced
BLAKE2b-256 82ca84385e3ca18f48cfa6a9f383d591b952ab2e69ca98f3ee615f538613707d

See more details on using hashes here.

File details

Details for the file autoai_ts_libs-4.0.16-cp311-cp311-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for autoai_ts_libs-4.0.16-cp311-cp311-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a7a80c999b994799b14ab4a080dd4e19ad9ced4df1f0e897fa1cd7d8f90ccbb6
MD5 807f1622c605ab343b8547e55eb0c6b5
BLAKE2b-256 2432be161e0088d57bf847667a3adc2f7c1a41eefc8f87d6deec834532f8fa20

See more details on using hashes here.

File details

Details for the file autoai_ts_libs-4.0.16-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for autoai_ts_libs-4.0.16-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ee4d1ee4e9d63b855be00c629580019614c6e52ee8db04a023ac041e0ae7f24f
MD5 0d5562c6649940d77ee443c7f4c2c550
BLAKE2b-256 4086fc795465b5f505e23379a392c71b4c14dd3daf756e6b12fb491cfeb5a7ab

See more details on using hashes here.

File details

Details for the file autoai_ts_libs-4.0.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for autoai_ts_libs-4.0.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20b08b6402b5f2040bb7165606881c9143abe4e00d7e221827ef1d2dc372e7ce
MD5 ff558043dea646cb1b4630b6cece7bf5
BLAKE2b-256 00c51dc91f9c830e0347ff1a266ca7bd17c938498efbd02f06152c74aa39c2d9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page